

Principal Principal Sardar Patel Institute of Technology Bhavans Andheri Campus Munshi Nagar, Andheri (West) Mumbai - 400 058,

(Autonomous Institute Affiliated to University of Mumbai)

Scheme of Curriculum for Computer Engineering M.Tech. Program

	Scheme for M. Tech. Computer Eng	gineering	(SEM I to	o SEI	M IV)	
	SEM I					
Course	Course Name	Group	Teac	hing	Scheme	Credits
Code			(H	Hrs/w	reek)	
			L	Т	Р	Total
CE911	Advanced Algorithm and Complexity	PC	4	-	-	4
CE912	Big Data Analytics and Management	PC	4	-	-	4
CE913	Information and System Security	PC	4	-	-	4
CEL911	PG Laboratory –I	PC	-	-	2	1
CEL912	PG Laboratory –II	PC	-	-	2	1
CES911	Seminar -I	PC	-	-	2	1
CEE91X	Professional Elective-I	PE	3	-	-	3
ILE91X	Institute Elective-I	OE	3	-	-	3
	Total		18	-	6	21
	SEM I	ĺ				
Course	Course Name	Group	Teachin	g Scł	neme	Credits
Code		-	(Hrs/we			
			L	Τ	Р	Total
CE921	Network Analysis and Design	PC	4	-	-	4
CE922	High Performance Computing	PC	4	-	-	4
CE923	User Experience Design	PC	3	-	-	3
CEL921	PG Laboratory –III	PC	-	-	2	1
CEL922	PG Laboratory –IV	PC	-	-	2	1
CEL923	PG Laboratory –V	PC	-	-	2	1
CES921	Seminar -II	PC	-	-	2	1
CEE92X	Professional Elective-II	PE	3	-	-	3
ILE92X	Institute Elective-II	OE	3	-	-	3
	Total		17	-	8	21
	SEM II	Ι				
Course	Course Name	Group	Teachin	ig Scł	neme	Credits
Code			(Hrs/we	ek)		
			L	Т	Р	Total
CES931	Seminar -III	PC	-	-	6=(2X3)	3
CEP931	Dissertation-I	PR	-	-	24	12
	Total		-	-	30	15
	SEM IV	V				
Course	Course Name	Group	Teachin	ig Scł	neme	Credits
Code			(Hrs/we	ek)		
			L	Τ	Р	Total
CEP941	Dissertation-II	PR	-	-	30	15
	Total		-	-	30	15

(Autonomous Institute Affiliated to University of Mumbai)

Evaluation Scheme

M.Tech Computer Engineering (SEM I)								
Course	Course Name			Marks				
Code		ISE	MSE	ESE	Total			
CE911	Advanced Algorithm and Complexity	20	20	60	100			
CE912	Big Data Analytics and Management	20	20	60	100			
CE913	Information and System Security	20	20	60	100			
CEL911	PG Laboratory –I	40		20	60			
CEL912	PG Laboratory –II	40		20	60			
CES911	Seminar -I	50			50			
CEE91X	Professional Elective-I	20	20	60	100			
ILE91X	Institute Elective-I	20	20	60	100			
	Total				670			
	M.Tech Computer Engineeri	ng (SEM	II)					
Course	Course Name			Marks				
Code		ISE	MSE	ESE	Total			
CE921	Network Analysis and Design	20	20	60	100			
CE922	High Performance Computing	20	20	60	100			
CE923	User Experience Design	20	20	60	100			
CEL921	PG Laboratory –III	40		20	60			
CEL922	PG Laboratory –IV	40		20	60			
CEL923	PG Laboratory –V	40		20	60			
CES921	Seminar -II	50			50			
CEE92X	Professional Elective-II	20	20	60	100			
ILE92X	Institute Elective-II							
	Total				630			
	M.Tech Computer Engineering	ng (SEM]	II)					
Course	Course Name			Marks	-			
Code		ISE	MSE	ESE	Total			
CES931	Seminar –III	50		50	100			
CEP931	Dissertation-I	50		100	150			
	Total				250			
	M.Tech Computer Engineeri	ng (SEM]	(V)					
Course	Course Name			Marks	1			
Code		ISE	MSE	ESE	Total			
CEP941	Dissertation-II	100		100	200			
	Total				200			

Code	Professional Elective-I Subjects
CEE911	Modern Operating System
CEE912	Image Analysis and Interpretation
CEE913	Natural Language Processing
CEE914	Advanced Soft Computing

Code	Professional Elective-II Subjects
CEE921	Internet of Things
CEE922	ICT for Social Cause
CEE923	Machine Vision
CEE924	Machine Learning

Code	Institute Elective-I Subjects
ILE911	Project Management
ILE912	Management Information System
ILE913	Operation Research
ILE914	Cyber Security and Laws
ILE915	Entrepreneurship Development and Management

Code	Institute Elective-II Subjects
	Massive Open Online Course (MOOC)
ILE921	Department will suggest MOOC courses equivalent to 3 credits.

(Autonomous Institute Affiliated to University of Mumbai)

Typical credit and load structure for PG (Computer Engineering) Program:

S.N.	Course	Credits/Semester				Total Credits
	Domain	Ι	Π	III	IV	
4	PC	14	14	-	-	28
5	PE	03	03	-	-	06
6	OE	03	03	-	-	06
7	PR	01	01	15	15	32
Total	Credits	21	21	15	15	72

Semester	Uni	its/W	eek	Total Units/	Total Credits
	L	Т	Р	Week	
Ι	18	-	06	24	21
II	17	-	08	25	21
III	-	-	30	30	15
IV	-	-	30	30	15

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

SEMESTER I

Scheme for M. Tech. Computer Engineering (SEM I to SEM IV)										
SEM I										
Course	Course NameGroupTeaching Scheme									
Code			(I	Irs/we	eek)					
			L	Т	Р	Total				
CE911	Advanced Algorithm and Complexity	PC	4	-	-	4				
CE912	Big Data Analytics and Management	PC	4	-	-	4				
CE913	Information and System Security	PC	4	-	-	4				
CEL911	PG Laboratory –I	PC	-	-	2	1				
CEL912	PG Laboratory –II	PC	-	-	2	1				
CEE91X	Professional Elective-I	PE	3	-	-	3				
ILE91X	Institute Elective-I	OE	3	-	-	3				
	Total		18	-	4	20				

Code	Professional Elective-I Subjects
CEE91A	Modern Operating System
CEE91B	Image Analysis and Interpretation
CEE91C	Natural Language Processing
CEE91D	Advanced Soft Computing

Code	Institute Elective-I Subjects
ILE911	Project Management
ILE912	Management Information System
ILE913	Operation Research
ILE914	Cyber Security and Laws
ILE915	Entrepreneurship Development and Management

Course Code		Course Name Credits Assign (Hrs/week)					gned				
			L	Т	Р	L	Т	Р	Total		
CE911	Adv	anced Algorithms and	4			4			4		
	(Complexity(AAC)			Exami	nation	Sche	me			
			ISE		MSE	F	ESE		Total		
			20		20		60		100		
<u> </u>											
Pre-requisite	1	. Data Structures									
Course Codes	s 2	2. Discrete Structures									
		3. Introduction to Algorithms									
	2	4. Programming Languages									
	A str	rong understanding of programming and a solid background in discrete mathematics,									
	inclu	iding probability, are necessary prerequisites to this course.									
At the end of	successf	ul completion of the course	, studen	ts wil	l be ab	le to					
	CO1	Analyze worst-case running	times of	algor	rithms u	sing asy	ymptot	ic anal	ysis		
	CO2	Describe the divide-and-con	Describe the divide-and-conquer paradigm and clarify when an algorithmic design								
		situation calls for it.									
C	CO3	Describe the greedy paradig	Describe the greedy paradigm and clarify when an algorithmic design situation								
Course	005	calls for it	,iii uiia ei	uning	when a	uigoin			ituation		
Outcomes	CO4	Demonstrate a familiarity w	ith appli	ed alg	orithmi	c setting	os.				
	CO5	Apply the concept of linear	program	ming	to optin	ize the	solutio	on			
	CO6	Describe the idea of backtra	cking h	anch	and bou	ind strat	tegy to	solves	some		
	000	problems		anvii		ina sua		50110			

Module No.	Unit	Topics	Ref.	Hrs.
	No.			
Foundations	1.1	The role of Algorithms in computing, Analyzing algorithms,	1,2	10
		Designing Algorithms		
	1.2	Growth of Functions-Asymptotic notation, Mathematical	1,2	
		Background for algorithm analysis		
	1.3	Recurrences, The substitution method, The recursion-tree method,	1,2	
Divide and		The master method, Randomized algorithms, Linear time sorting		
Conquer	1.4	Divide and Conquer Approach: Analysis of Merge sort, Analysis	1,2	
Approach		of Quick sort, Strassen, Fibonacci, Polynomial Multiplication		
Dynamic	2.1	Assembly-line Scheduling, Matrix-chain multiplication, Elements	1,2	10
Programming		of dynamic programming, Matrix-chain multiplication, Longest		
		common subsequence		
Greedy	2.2	Elements of the greedy strategy, Huffman codes, Minimum	1	
Algorithms		Spanning Trees.		
Amortized	2.3	Aggregate analysis, The accounting method, Table Doubling, The	1	
Analysis		potential method		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Graph Algorithms	3.1	Single-Source Shortest Paths-The Bellman-Ford algorithm, Dijkstra's algorithm, Difference constraints and shortest paths All-Pairs Shortest Paths-The Floyd-Warshall algorithm Maximum Flow-Flow networks, The Ford-Fulkerson method, Maximum bipartite matching, Red Black Tree	1,2	10
NP Completeness	3.2	NP-Completeness: NP-completeness and reducibility, NP- completeness proofs, NP-complete problems,	1,4	
Approximation Algorithms	4.1	Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem, The subset-sum problem	1,2	6
Applied Algorithms	4.2	Number-Theoretic : Number Theoretic notion, Greatest common divisor, The Chinese remainder theorem, RSA String Matching Algorithms :The Rabin-Karp algorithm, The Knuth-Morris-Pratt algorithm, Probabilistic Algorithm: Game Theoretic Techniques Randomized Algorithms: Monte Corlo and Las Vegas algorithm	1,3	8
Linear Programming	5.2	Standard and Slack Forms, Formulation, Simplex algorithm, Duality	1,2	8
Advance topic	5.3	Parallel Algorithms, Dynamics Multithreading, Greedy Scheduler, Multithreaded Algorithms, cache oblivious algorithm	1,2,3	
			Total	52

In-Semester Examination (ISE): The assessment includes the submission of a term paper by each student on the contemporary work related to Advanced Algorithms and Complexity.

- Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", PHI, India Second Edition
- [2] Horowitz, Sahani and Rajsekaran, Fundamentals of Computer Algorithms", Galgotia
- [3] Rajeev Motwani, PrabhakarRaghavan, "Randomized Algorithm", Cambridge University Press
- [4] Aho, Hopcroft, Ullman: The Design and analysis of algorithms", Pearson Education 2. Vijay V. Vajirani,"Approximation Algorithms", Spring

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
CE912	Big Data Analytics and	4			4			4
	Management(BDAM)	Examination Scheme						
		ISE		MSE	E	SE	,	Fotal
		20		20		60		100

Pre-requisite	Co	re Java,
Course Codes	aw	areness of RDBMS is desirable
At the end of s	uccessf	ful completion of the course, students will be able to
	CO1	Understand the basic concepts of Big Data and Hadoop as processing
		platforms for Big Data
	CO2	Understand the need of Map Reduce and to develop Mapper, Reducer
		tasks
Course	CO3	To understand Text Analytics, Recommendation System and Clustering
Outcomes		approaches
	CO4	Understand concept of data streams, Link Analysis, Social Mining Graphs
		and its real life applications
	CO5	Learn about the different options for importing or loading data into HDFS
		data sources such as relational databases, data warehouses, web server logs

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Big Data and Hadoop	2	10
	1.1	Hadoop Ecosystem, Hadoop Architecture(Name Node, Job		
		Tracker, Task Tracker, Data Node, Secondary Name Node),		
		JobTracker functionality, Namenode Backup(SNN)		
	1.2	Apache Hadoop and Hadoop Ecosystem, HDFS Storage,	2	
	1.3	Hadoop File System APIs, Anatomy of a File Read, Anatomy of a		
		File Write, Rack Awareness		
2		Developing Map Reduce	1,2	12
	2.1	Distributed Computing Concept (Map and Reduce), Anatomy of a	2	
		MapReduce Job Run(MR1), Running on a cluster, Packaging,		
		Launching a Job, The MapReduce Web UI, Retrieving the Results		
		167, Debugging a Job 169		
	2.2	Map Reduce Algorithms, Matrix-Vector Multiplication, Map	1	
		Reduce and Relational Operators, Matrix Multiplication of Large		
		Matrices, Shuffle and Sort,		
	2.3	Hadoop Logs, Remote Debugging, Advanced Map Reduce	2	
		Concepts, Combiner, Partitioner, Distributed Cache(Map Side Join),		
		Reduce Side join		

3		Clustering Approaches, Text Analytics and Recommendation	1	10
		System		
	3.1	CURE Algorithm, Stream-Computing, A Stream-Clustering		4
		Algorithm,		
		Initializing & Merging Buckets, Answering Queries		
	3.2	Introducing text mining, text mining techniques, Understanding		3
		Text Mining Process, Sentiment Analysis		
	3.3	Introduction to RS, content based RS, collaborative RS, hybrid RS.		3
		Issues and challenges RS, examples of real word RS, e.g., Amazon,		
		mobile RS, etc.		_
4	4.1	Mining Data Streams : Introduction, The Stream Data Model		5
		Sampling Data in a Stream : Obtaining a Representative Sample,		
		The General Sampling Problem, Filtering Streams:		
		The Bloom Filter, Analysis., Counting Distinct Elements in a		
	4.2	Stream, Counting Ones in a window:	-	2
	4.2	Link Analysis : Pagekank Definition, Structure of the web, dead		3
		in a search anging Efficient computation of Dage Dank: DageDank		
		Topic sensitive Page Pank link Spam. Hubs and Authorities		
	13	Mining Social Nework Graphs : Mining Social-Network Graphs		2
	4.3	11.1 Social Networks as Graphs Clustering of Social-Network		2
		Graphs SimRank		
5		Managing Big Data	2.3	10
	5.1	Moving Data into Hadoop		10
		• Load Scenarios		
		1. Understand how to load data at rest, in motion		
		2. Understand how to load data from common data		
		sources e.g. RDBMS		
		Using Sqoop		
		1. Import data from a relational database table into		
		HDFS		
		2. Use Sqoop import and export command		
	5.2	Flume Overview		
		1. Describe Flume and its uses		
		2. How Flume works		
		• Using Flume		
		1. List the Flume configuration components		
	5.2	2. Describe now to start and configure a Flume agent		
	5.5	• Introduction to Oozie workflows		
		 Explain the use for Oozle workflows Describe a workflow 		
		2. Describe a workflow elements		
		Oozie Coordinator		
		1. Explain the use for the Oozie coordinator		
		2. List some of the coordinator elements		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3. Describe how to submit a workflow job and a coordinator job		
	Total	52

- Jure Leskovec, Anand Rajaraman, Jeffrey Ullman, "Mining Massive Datasets", Cambridge University Press, 2nd Edition.
- [2] Tom White, "Hadoop, the Definitive Guide", O'Reilly, Yahoo Press, 3rd Edition.
- [3] Tanmay Deshpande, "Hadoop Real-World Solutions Cook Book", Packt Publishing, 2nd Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
CE913	Information and System Security(ISS)	4			4			4
		Examination Scheme						
		ISE		MSE	E	SE	,	Total
		20		20	(60		100

Pre-requisite		CE43				
Course Code	es	CE52				
At the end of	sful completion of the course, students will be able to					
	CO1 Provide the basic results of computer security and its limitations.					
	CO2	Contrast the different types of security policies, standards and practices.				
Course	CO3	Describe the major types of cryptographic algorithms and typical				
Outcomes		applications.				
	CO4	Understand the role of management in enforcing security policies,				
		standards and practices.				

Module	Unit No	Topics	Ref.	Hrs.
NO.	<u>No.</u> 1.1	Introduction - Basic Components, Threats, Policy and Mechanism, Assumptions and Trust, Assurance, Operational and Human Issues, Access Control Matrix, Protection State, Access Control Matrix Model, Protection State Transitions, Copying, Owning, and the	1,2	4
1	1.2	Attenuation of Privilege,Foundation Results - The General Question of Security, Take- Grant Protection Model, Expressive Power and the Models	1,2	4
	1.3	Security Policies - Types, The Role of Trust, Types of Access Control, Policy Languages.	1,2	2
	2.1	Confidentiality Policies - Goals of Confidentiality Policies, The Bell-LaPadula Model, Tranquility, The Controversy over the Bell-LaPadula Model.	1,2	4
2	2.2	Integrity Policies – Goals, Biba Integrity Model, Lipner's Integrity Matrix Model, Clark-Wilson Integrity Model	1,2	4
	2.3	Hybrid Policies - Chinese Wall Model, Clinical Information Systems Security Policy, Originator Controlled Access Control, Role-Based Access Control	1,2	4
3	3.1	Noninterference and Policy Composition - The Problem, Deterministic Noninterference, Non-deducibility, Generalized Noninterference, Restrictiveness.	1,2	5
	3.2	Cryptography - Classical Cryptosystems, Public Key Cryptography, Cryptographic Checksums.	1,2	2

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	3.3	Key Management - Session and Interchange Keys, Key Exchange,	1.0	4
		Revoking Keys Digital Signatures	1,2	4
	4.1	Cipher Techniques – Basics, Problems, Stream and Block Ciphers, Networks and Cryptography, Example Protocols	1,2	3
4	4.2	Authentication - Basics, Passwords, Challenge-Response, Biometrics, Location, Multiple Methods	1,2	3
	4.3	Security Systems - Design Principles, Identity - Files and Objects, Users, Groups and Roles, Naming and Certificates, Identity on the Web.	1,2	3
	5.1	Access Control Mechanisms - Access Control Lists, Capabilities, Locks and Keys, Ring-Based Access Control, Propagated Access Control Lists.	1,2	3
5	5.2	Information Flow - Basics and Background, Non-lattice Information Flow Policies, Compiler-Based Mechanisms, Execution-Based Mechanisms, Example Information Flow Controls.	1,2	4
	5.3	Confinement Problem - The Confinement Problem, Isolation, Covert Channels, Assurance - Introduction to Assurance, Assurance and Trust, Building Secure and Trusted Systems.	1,2	3
			Total	52

In-Semester Examination (ISE): The assessment includes the submission of a term paper by each student on the contemporary work related to Information and System Security.

- [1] Matt Bishop, "Computer Security: Art and Science", Addison-Wesley Professional, FIRST Edition, 2002.
- [2] Matt Bishop, "Introduction to Computer Security", Addison-Wesley Professional, FIRST Edition, 2005.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
	PG Laboratory –I (Advanced Algorithm and Complexity Laboratory)			2			1	1
CEI 011		Examination Scheme						
CEL911		ISE		MSE		ESE		Total
		40 .		-		20	60	

Pre-requisite		Data Structures,
Course Code	es	Analysis of Algorithms,
		Programming Languages,
		CE911(Advanced Algorithm and Complexity)
At the end o	f successi	ful completion of the course, students will be able to
	CO1	Analyze the complexities of various problems in different domains.
	CO2	Prove the correctness and analyze the running time of the basic
		algorithms for those classic problems in various domains.
Course	CO3	Ability to apply and implement learned algorithm design techniques and
Course		data structures to solve problems.
Outcomes	CO4	Ability to implement different operations of red-black trees and binomial
		heaps.
	CO5	To demonstrate dynamic programming algorithms.
	CO6	Ability to implement Graph algorithms in solving variety of problems.

Exp. No.	Experiment Details	Ref.	Marks			
1	Sorting of 2 lacs element using various sorting methods by applying	1,3	10			
	files operation					
2	Implementation of Red-Black trees and its various operations.	1,2	05			
3	Implementation of Dynamic programing: matrix chain multiplication	1	05			
	Cutting rod example					
4	Implementation of Binomial Heaps and its various operations	1,3	05			
5	Implementation of Bellman ford, Johnson's algorithm for sparse	1	05			
	graphs					
6	Implementation of Ford Fulkerson algorithm, push-relabel to front	1,2	05			
	methods					
7	Implementation of Simplex algorithm	1	05			
Total Marks						

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] T.H.Coremen, C.E. Leiserson, R.L. Rivest, and C. Stein, "Introduction to algorithms", 2nd edition, PHI publication 2005.
- [2] John Kleinberg, Eva Tardos, "Algorithm Design", Pearson
- [3] Ellis Horowitz, Sartaj Sahni , S. Rajsekaran. "Fundamentals of computer algorithms" University press.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Coue		L	Т	Р	L	Т	PTotal11meESETotal2060	Total
CEL912	PG Laboratory –II (Big Data Analytics and Managements Laboratory)			2			1	1
		Examination Scheme						
		ISE M		ISE		SE	Total	
		4	0		-		20	60

Pre-requisite		Data Structures, Analysis of Algorithms,
Course Codes		CE912(Big Data Analytics and Managements)
At the end of succes		ful completion of the course, students will be able to
Course Outcomes	CO1	Describe big data and use cases from selected business domains
	CO2	Install, configure, and run Hadoop and HDFS
	CO3	Perform map-reduce analytics using Hadoop
	CO4	Clarify NoSQL big data management
	CO5	Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data Analytics

Exp. No.	Experiment Details	Ref.	Marks
1	HDFS: Start by reviewing HDFS. You will find that its composition	1,2	10
	is similar to your local Linux file system.		
	You will use the hadoop fs command when interacting with HDFS.		
	1. Review the commands available for the Hadoop Distributed File		
	System		
	2. Copy file foo.txt from local disk to the user's directory in HDFS		
	3. Get a directory listing of the user's home directory in HDFS		
	4. Get a directory listing of the HDFS root directory		
	5. Display the contents of the HDFS file user/fred/bar.txt		
	6. Move that file to the local disk, named as baz.txt		
	7. Create a directory called input under the user's home directory		
	8. Delete the directory input old and all its contents		
	9. Verify the copy by listing the directory contents in HDFS		
2	MapReduce	1,2,3	10
	1. Create a JOB and submit to cluster		
	2. Track the job information		
	3. Terminate the job		
	4. Counters in MR Jobs with example		
	5. Map only Jobs and generic map examples		
	6. Distributed cache example		
	7. Combiners, Secondary sorting and Job chain examples		
3	MapReduce (Programs)	1,2,3	10
	Using movie lens data		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	1. List all the movies and the number of ratings		
	2. List all the users and the number of ratings they have done for a		
	movie		
	3. List all the Movie IDs which have been rated (Movie Id with at		
	least one user rating it)		
	4. List all the Users who have rated the movies (Users who have rated		
	at least one movie)		
	5. List of all the User with the max, min, average ratings they have		
	given against any movie		
	6. List all the Movies with the max, min, average ratings given by any		
	user		
4	Extract facts using Hive OR Extract sessions using Pig	4,3	10
	Hive allows for the manipulation of data in HDFS using a variant of		
	SQL. This makes it excellent for transforming and consolidating data		
	for load into a relational database. In this exercise you will use		
	HiveQL to filter and aggregate click data to build facts about user's		
	movie preferences. The query results will be saved in a staging table		
	used to populate the Oracle Database.		
	Total N	Aarks	40

- [1] Tom White, "Hadoop: The Definitive Guide", Third Edition, O' Reilley, 2012.
- [2] Eric Sammer, "Hadoop Operations", O'Reilley, 2012.
- [3] Vignesh Prajapati, Big data analytics with R and Hadoop, SPD 2013.
- [4] E. Capriolo, D. Wampler, and J. Rutherglen, "Programming Hive", O'Reilley, 2012.
- [5] Lars George, "HBase: The Definitive Guide", O'Reilley, 2011.
- [6] Alan Gates, "Programming Pig", O'Reilley, 2011.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
CEE91A	Modern Operating	3			3			3
	System(MOS)	Examination Scheme						
		ISE		MSE	E	SE	,	Total
		20		20	(60		100

Pre-requisit	e Cours	e Codes
At the end of	success	sful completion of the course, students will be able to
	CO1	Apply the principles and concepts in analyzing and designing Advance
		Operating System.
	CO2	Demonstrate the Mutual exclusion, Deadlock detection and agreement
Course		protocols of Distributed operating system
Outcomes	CO3	Analyze the performance and reliability of different Advanced Operating
		Systems.
	CO4	Solve the problems in real time task scheduling and mobile operating systems
	CO5	Apply the concepts on database operating systems in real life applications
	CO6	Compare mobile device architectures

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction: Types of Advanced Operating Systems.	1	04
	1.2	Architectures and design issues of Network operating		
		system, DOS, Middleware, RTS, DBOS		
	1.3	Introduction to process, Concurrent processes, Critical		
		Section problems, other synchronization problems.		
2	2.1	Distributed operating Systems, Scheduling and synchronization:	1,5,6	12
		Scheduling: Issues in load distributing, Components of load		
		distributing algorithms, Stability, Load distributing algorithms,		
		Performance Comparison, Selecting a suitable load sharing		
		Algorithm.		
	2.2	Synchronization: Physical and logical clocks.		
		Distributed Mutual Exclusion: Introduction, Classification		
		of Mutual Exclusion algorithms, Mutual Exclusion Algorithms.		
		Distributed Deadlock: Introduction, deadlock handling		
		strategies, Deadlock detection: Issues and resolution, Control		
		Organizations, Centralized algorithms, Distributed algorithms,		
		Hierarchical algorithms.		
3	3.1	Real Time Systems: Basic Model of Real time systems,	1,2,8	16
		Characteristics, Applications of Real time systems, Real time task		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

			Total	42
		Services layer, core os layer, file Systems		
	5.2	IOS and Android: Architecture and SDK frame work, Media layer,		
		file systems, inter process communication		
		management scheduling, memory management, I/O management,		
		Linux system: Design Principles, Kernel modules, Process		
5	5.1	CASE STUDIES:	3,5	4
		Algorithms, Concurrency Control Algorithms : Data Replication		
		Algorithms, Lock based, Timestamp based and Optimistic		
	4.2	Concurrency Control Algorithms : Basic synchronization		
		Distributed Database Systems		
		Problem of Concurrency Control, serializability theory,		
		systems, Concurrency control model of database systems,		
4	4.1	Database Operating systems: Concurrency control : Database	1,6	6
		File systems.		
		resource access, Processes and threads, Memory management,		
	3.2	Mobile operating systems: Micro kernel design, client server		
		distributed systems		
		Priority Inversion, PIP, PCP, HLP, Scheduling real time tasks in		
		handling resource sharing Resource Handling: Resource Sharing,		
		driven Scheduling, EDF Scheduling, Rate Monotonic Algorithm,		
		Scheduling, Clock driven Scheduling, Hybrid Schedulers, Event		
		scheduling, Types of tasks and their characteristics, Task		

- [1] Mukesh Singhal, Niranjan G.Shivaratri, "Advanced concepts in operating systems: Distributed, Database and multiprocessor operating systems" .MC Graw Hill education.
- [2] Rajib Mall, "Real-Time Systems: Theory and Practice", Pearson education.
- [3] Neil Smyth, "IPhone IOS 4 Development Essentials Xcode", Fourth edition, Payload media, 2011
- [4] Daniel P Bovet and Marco Cesatl, "Understanding the Linux kernel",3rd edition, O'Reilly,2005
- [5] Andrew S.Tanenbaum, "Modern Systems Principles and Paradigms". PHI
- [6] Pradeep K.Sinha, "Distributed Operating System-Concepts and design", PHI.
- [7] Andrew S.Tanenbaum, "Distributed Operating System", Pearson Education.
- [8] Jane W. S. Liu, "Real Time Systems", Pearson education.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	Т	Р	L	Т	Р	Total	
CEE91B	Image Analysis and Interpretation	3			3			3	
	(IAI)	Examination Scheme							
		ISE		MSE	E	SE	,	Total	
		20		20	60			100	

Pre-requisit	e Cours	Codes Digital Image Processing	
At the end of	success	ul completion of the course, students will be able to	
	CO1	Understand the importance of Image Analysis and Interpretation.	
Course	CO2	Analyze various techniques of Image Analysis	
Outcomos	CO3	Analyze various transforms.	
Outcomes	CO4	Use the methods of image analysis and interpretation for various Image	
		Processing applications.	

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction to Image processing System		04
	1.1	What is Digital Image Processing? Image types.	1	02
	1.2	Examples of Fields that Use Digital Image Processing.		01
	1.3	Light and the electromagnetic spectrum, Image digitization		01
2		Image Enhancement in Spatial domain		08
	2.1	Gray level transformations: Point Processing	1,2,3	03
	2.2	Histogram Equalization		02
	2.3	Neighborhood Processing, Spatial Filtering, Smoothing and		03
		Sharpening Filters, Median Filter.		
3		Image Analysis		08
	3.1	Data Structure for Image Analysis: Levels of image data representation, Traditional image data structures, Hierarchical data structures	1,2,3,4,5,7	03
	3.2	Image Segmentation :Thresholding , Edge based Segmentation		03
	3.3	Region Based Segmentation,		02
4		Discrete Image Transform		09
	4.1	Need for transform, Introduction to Unitary and Orthogonal	2,3,4	02
		Transform,		
	4.2	Discrete Cosine Transform, Singular Value Decomposition,		04
		K-L transform, Wavelet Transform.		
	4.3	The Kronecker Product ,Hadamard Transform, Fast		03
		Hadamard Transform, Walsh Transform, Haar Transform		
5		Image Feature Extraction		09

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.1	Spatial Feature Extraction, Transform Feature Extraction	1,2,4,7	03
	5.2	Geometry features, Moment based features,		04
	5.3	Texture based features.		02
6		Applications and Case Study		04
	6.1	Remote Sensing	1,2,6	02
	6.2	Medical Imaging		02
			Total	42

References:

- [1] Rafael C. Gonzalez and Richard E.Woods, Pearson "Digital Image Processing" Prentice Hall, 2nd Edition,
- [2] Anil K. Jain, "Fundamentals of Digital Image Processing", PHI
- [3] S Jayaraman, S Esakkirajan, and T Veerakumar "*Digital Image Processing* ", Tata McGraw-HillEducation Private Limited
- [4] Milan Sonka, Vaclav Hlavac and Roger Boyle," *Image Processing, Analysis, and Machine Vision* ", Thomson, 2nd Edition.
- [5] B. Chandra and D. Dutta Majumder, "*Digital Image Processing and Analysis*", Prentice Hall of India Private Ltd
- [6] Robert A. Schowengerdt, "*REMOTE SENSING*, *Models and Methods for Image Processing*", ELSEVIER, 3rd Edition.

[7] William K. Pratt, "Digital Image Processing", WILEY Publications, 3rd edition

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
CEE91C	Natural Language	3			3			3
	Processing(NLP)	Examination Scheme						
		ISE		MSE	E	SE		Total
		20		20		60		100

Pre-requisite Course Codes			Programming Methodology & Data Structure	
			Probability & Statistics	
			Theory of Computer Science	
At the end of successful completion of the course, students will be able to				
	CO1	To model	linguistic phenomena with formal grammars.	
Course	CO2	To design	, implement, and analyze NLP algorithms.	
Outcomos	CO3	Apply NL	P techniques to design real world NLP applications.	
Outcomes	CO4	Implemen	t proper experimental methodology for training and evaluating	
		empirical	NLP systems.	

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Introduction	1,4	3
	1.1	History of NLP, Generic NLP system, levels of NLP,		
		Knowledge in language processing,		
	1.2	Ambiguity in Natural language, stages in NLP, challenges of		
		NLP, Applications of NLP- Machine translation,		
	1.3	question answering system, Information retrieval, Text		
		categorization, text summarization & Sentiment Analysis		
2		Word Level Analysis	1,3,4	7
	2.1	Morphology analysis -survey of English Morphology,		
		Inflectional morphology & Derivational morphology;		
	2.2	Regular expression, finite automata, finite state transducers (
		FST), Morphological parsing with FST,		
	2.3	Lexicon free FST - Porter stemmer. N -Grams- N-gram		
		language model, Ngram for spelling correction.		
3		Syntax analysis	1,3	8
	3.1	Part-Of-Speech tagging(POS)- Tag set for English (Penn		
		Treebank), Rule based POS tagging,		
	3.2	Stochastic POS tagging, Issues -Multiple tags & words,		
		Unknown words, class based n –grams.		
	3.3	Context Free Grammar - Constituency , Context free rules &		
		trees, Sentence level construction, Noun Phrase, coordination,		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		agreement, the verb phrase & sub categorization		
4		Semantic Analysis		8
	4.1	Attachment for fragment of English- sentences, noun phrases,	1,2,3	
		Verb phrases, prepositional phrases,		
	4.2	Relations among lexemes & their senses –Homonymy,		
		Polysemy, Synonymy, Hyponymy, Wordnet,		
	4.3	Selectional restriction based disambiguation & limitations,		
		Robust WSD – machine learning approach and dictionary		
		based approach		
5		Pragmatics	1,2,3	8
	5.1	Discourse -reference resolution, reference phenomenon,		
		syntactic & semantic constraints on co reference,		
	5.2	preferences in pronoun interpretation, algorithm for pronoun		
		resolution .Text coherence, discourse structure		
6		Applications (preferably for Indian regional languages)	1,2,3,4,5	8
	6.1	Machine translation, Information retrieval.		
	6.2	Question answers system, categorization, summarization,		
		sentiment analysis		
			Total	42

- [1] Daniel Jurafsky, James H. Martin "Speech and Language Processing" Second Edition, Prentice Hall, 2008.
- [2] Christopher D.Manning and Hinrich Schutze, "Foundations of Statistical Natural Language Processing", MIT Press, 1999.
- [3] Siddiqui and Tiwary U.S., Natural Language Processing and Information Retrieval, Oxford University Press (2008).
- [4] Daniel M Bikel and Imed Zitouni " Multilingual natural language processing applications" Pearson, 2013
- [5] Alexander Clark (Editor), Chris Fox (Editor), Shalom Lappin (Editor) " The Handbook of Computational Linguistics and Natural Language Processing " ISBN: 978-1-118-

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
CEE91D	Advanced Soft	3			3			3
	Computing (ASC)	Examination Scheme						
		ISE		MSE	Ε	SE	,	Total
		20		20		60		100

Pre-requisite Course Codes			Fundamental of AI and Soft Computing					
At the end of successful completion of the course, students will be able to								
	CO1	Identify the various characteristics of soft computing techniques.						
	CO2	Apply &	Apply & design fuzzy controller system.					
Course	CO3	Apply th	e supervised and unsupervised learning algorithm for real world					
Outcomes		applications.						
	CO4	Solve the problem using associative memory networks						
	CO5	Design h	ybrid system applications					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
		Introduction		
1	1.1	Differentiate Hard and Soft Computing	1,5	2
	1.2	Soft Computing Constituents		
	1.3	Neuro Fuzzy and Soft Computing Characteristics		
2		Fuzzy Logic & Rough Set Theory		
	2.1	Fuzzy Relations and Fuzzy Rules, Generalized Modens Ponens, Defuzzification and its Types	1,2,5,7	10
	2.2	Fuzzy Inference Systems, Design of Fuzzy Controller, Introduction to Rough Sets		
3		Supervised and Unsupervised Network		
	3.1	Supervised Network : Error Back Propagation Training Algorithm, Radial Basis Function	1,2,3,8,9	12
	3.2	Unsupervised Network: Kohenon Self Organizing Maps, Basic Learning Vector Quantization, Basic Adaptive Resonance Theory		
4		Associative Memory Network		
	4.1	Introduction, Hebb Rule, Outer Product Rule	4	10
	4.2	Types of associative Memory Network :Auto associative and		
		Hetero associative memory networks,		
	4.3	BAM network, Hopfield Network		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5		Hybrid Systems		
	5.1	Fuzzy-Neural Systems, Neuro-Genetic Systems,	2,9	4
		Fuzzy-Genetic Systems		
6		Applications and Case Study		
	6.1	Automobile Fuel Efficiency using ANFIS	1	4
	6.2	Color Receipe prediction using CANFIS		
			Total	42

- [1] J.S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- [2] S. Rajasekaran and G.A.Vijaylakshmi Pai.. Neural Networks Fuzzy Logic, and GeneticAlgorithms, Prentice Hall of India.
- [3] Satish Kumar "Neural Networks A Classroom Approach" Tata McGrawHill.
- [4] S.N.Sivanandam, S.N.Deepa "Principles of Soft Computing" Second Edition, Wiley Publication.
- [5] Samir Roy, Udit Chakraborty " Introduction to Soft Computing" Pearson Education India
- [6] Fakhreddine O. Karry, Clarence De Silva," Soft Computing and Intelligent systems Design Theory, Tools and Applications" Pearson 2009.
- [7] Timothy J.Ross "Fuzzy Logic with Engineering Applications" Wiley.
- [8] Jacek.M.Zurada "Introduction to Artificial Neural Sytems" Jaico Publishing House.
- [9] Li Deng and Dong Yu "Deep LearningMethods and Applications".

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
	Project Management	3			3			3
II F011		Examination Scheme						
ILE711		ISE		MSE	E	SE	,	Total
		20		20	(60		100

Pre-requisit	e Cours	se Codes					
At the end of	success	sful completion of the course, students will be able to					
	CO1	Manage the selection and initiation of individual projects in the enterprise.					
	CO2	Conduct project planning activities that accurately forecast project costs,					
		timelines, and quality.					
Course	CO3	Implement processes for successful resource, communication, and risk and					
Outcomos		change management					
Outcomes	CO4	Demonstrate effective project execution and control techniques that result in					
		successful projects					
	CO5	Conduct project closure activities and obtain formal project acceptance					
	CO6	Demonstrate Team work and team spirit and how to overcome the conflicts					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Project Life cycle	1	8
	1.2	Project selection criteria, Risk considerations in selection	1	
	1.3	Project bid, RFP	1	
	1.4	Managing conflicts and the Art of negotiation	1, 3	
2	2.1	Project plan –WBS	1, 2	8
	2.2	Project activity and risk planning	1, 2	
	2.3	RACI Matrix and Agile projects	1	
	2.4	Budgeting, Estimating cost and Risk	1	
3	3.1	Scheduling- Network Diagrams	1, 2	10
	3.2	CPM- crashing a project	1, 2	
	3.3	Resource loading and leveling	1, 2	
	3.4	Constrained resource scheduling	1, 2	
4	4.1	Monitoring and controlling cycle	1, 3	10
	4.2	Earned value analysis	1, 3	
	4.3	Control of Change and scope creep	1, 3	
5	5.1	Project procurement management, outsourcing	3	6
	5.2	Project Auditing	1	
	5.3	Project termination process	1	
			Total	42

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- [1] Jack Meredith and S. J. Mantel, "Project Management", Wiley, 8th Edition.
- [2] John M. Nicholas, "Project Management-Business and Technology", PHI, 2nd edition
- [3] Jack T. Marchewka," Information Technology Project Management", Wiley, 4th Edition.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
ILE912	Management Information	3			3			3
	System(MIS)	Examination Scheme						
		ISE		MSE	ESE		,	Fotal
		20		20	60			100

Pre-requisite	Course	Codes			
At the end of	successf	al completion of t	he course, students will be able to		
	CO1	Identify key fact	ors of the business problem. Clearly define a business		
		problem using k	ey facts		
CO2 Critically analyze defined business problem using widely used analyt					
		techniques and r	nodels		
Course	CO3	Propose potentia	l alternative solution, evaluate them and recommend an		
Outcomes		appropriate solution	tion		
	CO4	Identify Informa	tion Requirements from external Systems in order to		
		integrate differen	nt aspects of business		
	CO5	Apply MIS conc	epts in e-Business.		
	CO6	Explain ethical,	social and security issues in MIS		

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction: Level of management activities, Types of MIS	1	6
	1.2	Role of MIS in global business	1,4	
	1.3	Strategic information System, Porter's value-chain Model	1	
2	2.1	Information system planning: Creating an IS plan	2	8
	2.2	IS growth model-Nolan six stage model,	2	
	2.3	Three stages of planning process	2	
3	3.1	Decision Support System: Simon's model of Decision Making	1,2	8
	3.2	Methods for Decision Making, Decision support techniques	1,2	
	3.3	Components of DSS, BI and Knowledge management system	1	
4	4.1	Enterprise systems: Enterprise Resource Planning (ERP) systems	5	8
	4.2	Customer Relationship Management (CRM)	5	
	4.3	Supply Chain Management System (SCM)	5	
5	5.1	E-Business Systems	3	8
	5.2	E-commerce: Digital Markets, Digital Goods	6,4	
	5.3	E-Governance- objectives and delivery models	1	
6	6.1	Ethical and Social Issues in Information Systems	4	4
	6.2	Securing Information Systems	4	
			Total	42

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

References:

[1] D.P. Goyal, "Management Information Systems- Managerial Perspectives", Vikas publishing House, 4th Edition

[2] Gordon B Davis & Margethe H Olson "Management Information Systems", TMH

[3] James O'Brien, George M. Marakas, Ramesh Behl, "Management Information Systems", McGraw Hill Education, 10th Edition, , 2013.

[4] Kenneth C. Laudon and Jane P. Laudon, "Management Information Systems". Pearson India, 14th edition, 2016

[5] Waman Jawadekar, "Management Information Systems", 4th Edition, Tata McGraw-Hill Publishing Company Limited.

[6] P.T. Joseph, S.J., "E-Commerce: An Indian Perspective", 2nd Edition, Prentice Hall of India

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
	Operations Research(OR)	3			3			3
II E012		Examination Scheme						
ILE915		ISE		MSE	E	SE	,	Fotal
		20		20	60			100

Pre-requisite	Linear	Algebra					
Course	Analys	sis of Algorithms					
At the end of su	ccessful	completion of the course, students will be able to					
	CO1	Translate real world problems into mathematical formulation					
	CO2	Solve problems based on linear programming, Transportation model and					
		Integer programming					
	CO3	Design a dynamic system as a queuing model and compute important					
Course		performance measures					
Outcomes	CO4	Solve problems using dynamic programming					
	CO5	Solve network models like the shortest path, minimum spanning tree, and					
		maximum flow problems					
	CO6	Develop the mathematical formulation of real world problems using Game					
		theory					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
		Introduction to Operations Research :	1,2,5,8	14
1		Introduction to OR Modeling Approach and various real life		
		situations		
		Linear Programming:		
		Introduction to linear programming, Formulation of the problem,		
		Graphical method, Simplex method, Duality and Sensitivity		
		analysis		
		Transportation Model:		
		Definition of the transportation model, non-traditional		
		transportation models, Transportation algorithm, Assignment		
		model		
		Integer Programming		
		Formulations, Zero-one problem-additive algorithm, Gomary's		
		cutting plane algorithm, Branch and bound algorithm for IP		
		Dynamic Programming:	1,7	6
2		Introduction, recursive nature of computations in Dynamic		
		programming, forward and backward recursion, Dynamic		
		programming applications		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

3	Network Models: Minimum spamming trees, Shortest path problems, Maximum flow problems, Minimum cost flow problem, CPM and PERT	1,5,6,8	6
4	Queuing model:Introduction, Basic Definitions and Notations, AxiomaticDerivation of the arrival and Departure (Poisson Queue), PureBirth and Death Models, Poison Queue Models	1,2,6	6
5	Non linear Programming: Gradient Method, Kuhn Tucker conditions, Quadratic Programming, Convex programming	1,3,7	5
6	Game Theory: Introduction, Two Person zero sum Game, Saddle Point, Mini- Max and Maxi-mini Theorems, Games without saddle point, Graphical Method, Principle of Dominance.	3,5,7	5
		Total	42

- [1] Hamdy A. Taha, "Operations Research: An Introduction", Prentice-Hall of India, 6th Edition.
- [2] F.S. Hiller, G. J. Lieberman, "Introduction to Operations Research,", McGraw Hill, 8th Edition.
- [3] Kanti Swarup, P. K. Gupta, Man Mohan " Operations Research,", S. Chand & Sons, 14th Edition.
- [4] Gupta P. K. and. Hira D.S., "Operations Research", S. Chand & Company, 5th Edition.
- [5] Billey E. Gillett, "Introduction to Operations Research A Computer-Oriented Algorithmic Approach ", Tata McGraw Hill Edition
- [6] Wayne L. Winston, "Operations Research Applications and Algorithms", Cengage Learning, 4th Edition
- [7] J. K. Sharma, "Operations Research Theory and Applications", MacMillan, 2nd Edition
- [8] S. D. Sharma, "Operations Research", Kedar Nath and Ram nath

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
	Cyber Security and Laws	3			3			3
II E014		Examination Scheme						
ILE914		ISE			MSE	ESE	ESE Tot	
		20			20	60		100

Pre-requisite Course Codes			Communication Networks					
After success	ful com	pletion of the	course students will able to:					
	CO1	Identify and	l classify various cybercrimes with respect to organizational					
		weaknesses	in order to mitigate the security risk and estimate the impact on					
		society and v	world					
Course	CO2	Interpret and	nterpret and apply Indian IT laws in various legal issues					
Outcomos	CO3	Compute sec	Compute security risk and analyze it					
Outcomes	CO4	Analyze the	Analyze the results of vulnerability scans of vulnerability assessment and					
		generate rep	ort with penetration testing					
	CO5	Apply Inform	Apply Information Security Standards compliance during software design and					
		development	t					

Module	Unit	Topics	Ref.	Hr
No.	No.			s.
1		Introduction to Cyber Security	1,2	10
		Cybercrime definition and origins of the world, Cybercrime and	1	
		information security, Classifications of cybercrime, Cybercrime and		
		the Indian ITA 2000, A global Perspective on cybercrimes.		
		Cyber offenses & Cybercrimes:	1,7	
		How criminal plan the attacks, Social Engg, Cyber stalking, Cyber		
		café and Cybercrimes, Botnets, Attack vector, Cloud computing,		
		Proliferation of Mobile and Wireless Devices, Trends in Mobility,		
		Credit Card Frauds in Mobile and Wireless Computing Era,		
		Security Challenges Posed by Mobile Devices		
2		Tools and Methods Used in Cybercrime:	1,2	06
		Phishing, Password Cracking, Keyloggers and Spywares, Virus and		
		Worms, Steganography, DoS and DDoS Attacks, SQL Injection,		
		Buffer Over Flow, Attacks on Wireless Networks, Identity Theft (ID		
		Theft)		
3		Security Risk Assessment and Risk Analysis:	7,8,10	12
		Risk Terminology, Laws, Mandates, and Regulations, Risk		
		Assessment Best Practices, The Goals and Objectives of a Risk		
		Assessment, Best Practices for Quantitative and Qualitative Risk		
		Assessment.		
		Vulnerability Assessment and Penetration Testing (VAPT):		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Total	40
	SOX, GLBA, HIPAA, ISO, FISMA, NERC, PCI-DSS		
	Appeals Under the IT Act, 2000, IT Act. 2008 and its Amendments		
	Cyber Crime and Criminal Justice: Penalties, Adjudication and	6	
5	Indian IT Act:	1,2,4,	04
	The Need for an Indian Cyber Law		
	Electronic Data Interchange Law Relating to Electronic Banking,		
	Cyber Law, Global Trends in Cyber Law, Legal Framework for		
	Law, The Evidence Aspect in Cyber Law, The Criminal Aspect in		
	Aspect of Cyber Law ,The Intellectual Property Aspect in Cyber		
	E-Commerce, The Contract Aspects in Cyber Law, The Security		
	The Concept of Cyberspace	,	
4	Cyber Security Laws and Legal Perspectives:	1,4	08
	Perimeter, Attack Resources, Network and Web VAPT Process		
	Penetration Testing Phases-Discover/Map,Penetrate		
	. Reporting		
	Discovery Exploitation/Analysis		
	Vulnerability Assessment Vulnerability Assessment Phases-		
	VAPT An Overview Goals and Objectives of a Risk and		

References:

1. Nina Godbole, Sunit Belapure, Cyber Security, Wiley India, New Delhi.

- 2. The Indian Cyber Law by Suresh T. Vishwanathan; Bharat Law House New Delhi
- 3. The Information technology Act, 2000; Bare Act- Professional Book Publishers, NewDelhi.
- 4. Cyber Law & Cyber Crimes By Advocate Prashant Mali; Snow White Publications, Mumbai
- 5. Nina Godbole, Information Systems Security, Wiley India, New Delhi
- 6. Kennetch J. Knapp, Cyber Security & Global Information Assurance Information Science Publishing.

7.Michael Gregg & David Kim,Inside Network Security Assessment: Guarding Your IT Infrastructure, Pearson Publication

8. M. L. Srinivasan, CISSP in 21 Days - Second Edition PACT Publication

9. Charles P. Pfleeger and Shari Lawrence Pfleeger, Security in Computing, Pearson Publication 10. Douglas J. Landoll, The Security Risk, Assessment Handbook-Second Edition , Auerbach

Publications

11. Websites for more information is available on : The Information Technology ACT, 2008- TIFR : https://www.tifrh.res.in

12. Website for more information, A Compliance Primer for IT professional:

https://www.sans.org/reading-room/whitepapers/compliance/compliance-primer-professionals-33538

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
ILE915	Entrepreneurship	3			3			3
	Development and	Examination Scheme						
	Management(EDM)		ISE		MSE	ESE	,	Total
			20		20	60		100

Pre-requisi	te Cour	rse Codes					
At the end o	At the end of successful completion of the course, students will be able to						
	CO1 Understand the concept of entrepreneurship with strategic planning						
	CO2	Analyze the international market for entrepreneurship					
Course	CO3	Study of e- governance in Entrepreneurship					
Outcomes	CO4	Acquaint with entrepreneurship and management of business with IT					
	CO5	Understand data science for Entrepreneurship and generate knowledge base of					
		technology entrepreneurship					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Entrepreneurship	1	6
	1.1	Importance Of Entrepreneurship, concept of Entrepreneurship,		
		characteristics of successful Entrepreneur, classification of		
		Entrepreneur		
	1.2	Myths of Entrepreneurship, Entrepreneurial development models,		
		problems faced by Entrepreneurs and capacity building for		
		Entrepreneurship, profile of successful Entrepreneurship		
2		Setting up a small business enterprise	1	6
	2.1	Identifying the business opportunity, Business opportunities in		
		various sector		
	2.2	Formalities for setting up of a small business enterprise,		
		Environment pollution related clearance		
3		Strategic management in small business	1	6
	3.1	Organic life cycle		
	3.2	Strategic management, The essence of business ethics		
4		Corporate governance	2	6
	4.1	Introduction, role for board of directors, size and composition of		
		board of directors, board structure, agency theory, board		
		committee, two tier boards, effectiveness of BoD role of CEO role		
		top management skill required corporate values style of strategic		
		management		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.2	Factors affecting Entrepreneurship growth, Factors affecting	3	
		Entrepreneurship: economic factors, non-economic factors,		
		Government action		
5		Selecting international business opportunities	7	6
	5.1	Foreign in market selection model, Developing foreign market		
		indicators, Primary Vs secondary foreign market data		
	5.4	Sources of country market data, Competitive positioning		
		International competitive information		
6		IT for entrepreneurship innovation		6
	6.1	Enlisting online communication in web 2.0	4	
	6.2	Role of websites and E-commerce in the development of global	5	
		start-ups, E- entrepreneurship the principle of funding electronics		
		venture, The relationship between internet entrepreneurs idea		
		generation and porter's generic strategies		
		e- learning the cornerstone to transferring entrepreneurship		
		knowledge		
7		The knowledge base of technology entrepreneurship	6	6
	7.1	Capitalization of science and technology knowledge practices		
		trends and impact on techno entrepreneurship		
	7.2	Drivers for green strategy for enhancing sustainable techno]	
		entrepreneurship in emerging economics		
			Total	42

- [1] Poornima Charantimath, "Entrepreneurship development and Small Business Enterprise", Pearson
- [2] R. Srinivasan "Strategic Management: The Indian Context"
- [3] S S Khanka "Entrepreneurial Development"
- [4] Tobias Kollmann, Andreas Kuckertz "*E-entrepreneurship and ICT Ventures: Strategy...* (*Hardcover*)"
- [5] Zhao, Fang "Information Technology Entrepreneurship and Innovation"
- [6] François Thérin "Handbook of Research on Techno-Entrepreneurship", Second Edition
- [7] Robert D. (Dale) Hisrich "International Entrepreneurship: Starting, Dev" (Paperback)
- [8] Robert D Hisrich, Michael P Peters, A Shapherd, "*Entrepreneurship*", latest edition, The McGrawHill Company
- [9] Vasant Desai, "Entrepreneurial development and management", Himalaya Publishing House

(Autonomous Institute Affiliated to University of Mumbai)

SEMESTER II

Scheme for M. Tech. Computer Engineering (SEM I to SEM IV)										
SEM II										
Course	Course Name	Group	Teaching Scheme Cred							
Code			(Hrs/we	ek)						
			L	Т	Р	Total				
CE921	Network Analysis and Design	PC	4	-	-	4				
CE922	High Performance Computing	PC	4	-	-	4				
CE923	User Experience Design	PC	3	-	-	3				
CEL921	PG Laboratory –III	PC	-	-	2	1				
CEL922	PG Laboratory –IV	PC	-	-	2	1				
CEL923	PG Laboratory –V	PC	-	-	2	1				
CES921	Seminar -I	PR	-	-	2	1				
CEE92X	Professional Elective-II	PE	3	-	-	3				
ILE92X	Institute Elective-II	OE	3	-	-	3				
	Total		17	-	8	21				

Code	Professional Elective-II Subjects				
CEE92A	Internet of Things				
CEE92B	ICT for Social Cause				
CEE92C	Machine Vision				
CEE92D	Machine Learning				

Code	Institute Elective-II Subjects
	Massive Open Online Course (MOOC)
ILE921	Department will suggest MOOC courses equivalent to 3 credits.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
CE921	Network Analysis and	4			4			4
	Design (NDA)	Examination Scheme						
		ISE M 20		MSE	ESE		Total	
				20	60		100	

Pre-requisite Course Codes	Computer Networks					
At the end of successful completion of the course, students will be able to						
	CO1	Understand the theoretical issues in protocol design and apply it				
		to Quality of service in networks				
	CO2	Understand issues in the design of network processors and apply				
		them to design network systems				
	CO3	Simulate working of wired and wireless networks to understand				
Course Outcomes		networking concepts				
	CO4	Develop solutions by applying knowledge of mathematics,				
		probability, and statistics to network design problems.				
	CO5	Understand the basics of software defined networking and explore				
		research problems in that area.				

Module No.	Unit	Topics	Ref.	Hrs.
	No.			
Internetworking	1.1	Congestion control and Resource allocation: Issues of Resource	1,2	05
		Allocation, Queuing Disciplines: FIFO, Fair Queuing, TCP		
		Congestion Control: Additive Increase/Multiplicative Decrease,		
		Slow Start, Fast Retransmit and Fast Recovery.		
	1.2	Congestion-Avoidance Mechanisms: DECbit, Random Early	1.2	05
		Detection (RED), Source-Based Congestion Avoidance, Quality		
		of Service: Application Requirements, Integrated Services		
		(RSVP), Differentiated Services (EF, AF)		
Routing	2.1	IPv4 Routing Principles, Routing Information Protocol (RIP),	2.3	08
		IGRP and EIGRP, OSPF for IPv4 and IPv6, Border Gateway		
		Protocol (BGP), EIGRP, High Availability Routing		
IPv6	3.1	IPv4 deficiencies, patching work done with IPv4, IPv6		08
		addressing, multicast, Anycast, ICMPv6, Neighbour Discovery,		
		Routing, Resource Reservation, IPv6 protocols		
Network Design	4.1	Designing the network topology and solutions-Top down	1,2	14
		Approach: PPDIOO – Network Design Layers - Access Layer,		
		Distribution Layer, Core/Backbone Layer, Access Layer Design,		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

1	1		Total	52
OpenFlow				
Networking and		Network Function Virtualization-Concepts.		
Defined		Planes, SDN Controllers, Introduction to Openflow Protocol,		
Software	5.2	Introduction to Software Defined Networking, Control and Data	5,6	04
		ATCP.		
Networks		Wireless Networks: DSDV, DSR, AODV, ZRP. Transport Layer:		
Wireless		MACA-BI, DPRMA, MACA/PR. Routing Protocols for Ad Hoc		
Ad Hoc	5.1	MAC Protocols for Ad Hoc Wireless Networks: MACA/W,	4,5	08
		Traditional WAN Technologies, VPN Design.		
		and Data Center Design, Wireless LAN Design, WAN Design:		
		Design Rules and Campus Design best practices, Virtualization		
		Backbone Network Design, Enterprise LAN Design: Ethernet		

In-Semester Examination (ISE): The assessment includes the submission of a term paper by each student on the contemporary work related to Network Analysis and Design.

References:

[1] Larry L. Peterson and Bruce S. Davie, Computer Networks: A Systems Approach, Elsevier, Fourth Edition.

[2] Philip M. Miller, TCP / IP: The Ultimate Protocol Guide Applications, Access and Data Security - Vol 2, Wiley.

[3] Pete Loshin, IPv6: Theory, Protocols and Practice, Morgan Kaufmann, 2nd Edition, 2004.

[4] C. Siva Ram Murthy, B.S. Manoj, Ad Hoc Wireless Networks: Architectures and, Prentice Hall, 2004.

[5] Thomas D NAdeau and Ken Grey, Software Defined Networking, O'Reilly, 2013.

William Stallings, High-Speed Networks and Internets, Pearson Education, 2nd Edition, 2002.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
CE922		4			4			4
	High Performance Computing (HPC)	Examination Scheme						
		ISE			MSE	ESE		Total
		20			20	60		100

Pre-requisite Course Codes		se Codes CE44,					
		CE45,					
		CE62					
At the end of	success	sful completion of the course, students will be able to					
	CO1	Understand the different parallel computing approaches and platforms to					
		achieve High Performance Computing.					
Course	CO2	Determine the communication pattern and network technology for High					
Outcomes		Performance Computing					
	CO3	Design High Performance Computing System using MPI and OpenMP.					
	CO4	Perform heterogeneous Computing using GPGPU and OpenCL.					

Module	Unit	Topics	Dof	Urc					
No.	No.		Kel.	1115.					
	1.1	Parallel Computing Models – Computing History, Multiprocessor and Multicomputer, Multi-vector and SIMD Computers, PRAM and VLSI Models, Architectural Developmental Tracks							
1	1.2	Program and Network Properties – Conditions and Parallelism, Program Partitioning and Scheduling, Program Flow Mechanisms, System Interconnect Architectures							
	1.3	Principle of Scalable Performance – Performance Metrics and Measures, Parallel Processing Applications, Speedup Performance Laws, Scalability Analysis and Approaches							
2	2.1	Communication Operations - One-to-All Broadcast and All-to- One Reduction, All-to-All Broadcast and Reduction, All-Reduce and Prefix-Sum Operations, Scatter and Gather, All-to-All Personalized Communication, Circular Shift, Improving the Speed of Some Communication Operations	2	3					
	2.2	2.2 High Speed Networks – Evolution, Design Issues, Fast Ethernet, High Performance Parallel Interface (HiPPI), Asynchronous Transfer Mode (ATM), Scalable Coherent Interface (SCI), ServerNet, Myrinet, Memory Channel, Synfinity							
	2.3	Lightweight Messaging Systems - Latency/Bandwidth Evaluation,TraditionalCommunicationMechanisms,LightweightCommunicationMechanisms,Kernel-LevelLightweight	3	4					

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Communications, User-Level Lightweight Communications		
	3.1	Active Messages (AM) - AM Programming Model, AM Implementation, Analysis, Programming Models on AM	3	3
3	3.2	Analytical Modeling - Sources of Overhead in Parallel Programs, Performance Metrics for Parallel Systems, The Effect of Granularity on Performance, Scalability of Parallel Systems, Minimum Execution Time and Minimum Cost-Optimal Execution Time, Asymptotic Analysis of Parallel Programs, Other Scalability Metrics	2	4
	3.3	Parallel Programming Design – Preliminaries Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel Algorithm Models, The Task/Chanel Model, Foster's Design Methodology.	2,4	5
	4.1	Message-Passing Interface (MPI) – Model, Interfaces, Functions, Circuit Satisfiability Problem	4	4
4	4.2	MPI Examples - Sieve Eratosthenes, Flyod's Algorithm, Performance Analysis, Matrix-Vector Multiplication, Document Classification	4	3
	4.3	Shared-Memory Programming & OpenMP – Model, Loops, critical sections, Reductions, Data and Functional parallelism, Conjugate and Jacobi Method.	4	3
	5.1	Introduction to OpenCL – Execution Environment, Memory Model, Writing Kernel, OpenCL Device Architectures,	5	3
5	5.2	OpenCL Concurrency – Concurrency and Execution Model, Synchronization,	5	3
	5.3	CPU/GPU OpenCL Implementation – OpenCL on an AMD Phenom II X6 and Radeon HD6970 GPU	5	3
		Total		52

In-Semester Examination (ISE): The assessment includes the submission of a term paper by each student on the contemporary work related to High Performance Computing.

- [1] Kai Hwang, Naresh Jotwani, "Advanced Computer Architecture: Parallelism, Scalability, Programmability", Mcgraw-Hill Education, SECOND Edition, 2008.
- [2] Ananth Grama, "Introduction to Parallel Computing", Addison Wesley, SECOND Edition, 2003.
- [3] Rajkumar Buyya, "High Performance Cluster Computing: Architectures and Systems Volume 1", Prentice Hall PTR, FIRST Edition, 1993.
- [4] Michael J. Quinn, "Parallel Programming in C with MPI and OpenMP", McGraw HIII, FIRST Edition, 2003
- [5] Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, Dana Schaa, "*Heterogeneous Computing with OpenCL*", Morgan Kaufmann, FIRST Edition, 2011

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	Т	P	L	Т	Р	Total	
CE923		3			3			3	
	User Experience Design(UXD)	Examination Scheme							
		ISE			MSE	ESE	Total		
			20		20	60		100	

Pre-requisite Course Codes		se Codes	Mobile and Web Technologies					
			Software Engineering					
At the end of	succes	sful completio	n of the course, students will be able to					
	CO1	O1 Differentiate between UI and UX.						
	CO2	Design life c	ycle template to enhance User Experience design					
	CO3	Analyze UX	design process for users					
Course	CO4	Apply design	thinking to model the prototype					
Outcomes	CO5	Evaluate and	analyze user experiences using different UX evaluation					
		techniques	echniques					
	CO6	Analyze UX	nalyze UX design guidelines to build innovative and user friendly					
		application						

Module	Unit	Topics	Ref.	Hrs.	
N0.	N0.				
1		Introduction to UI and UX design	1,5,6,7	4	
	1.1	History of User interface designing, User interface Design Goals			
	1.2	What is UX, Ubiquitous interaction, Emerging desire for usability,			
		From usability to user experience			
	1.3	Emotional impact as part of the user experience, User experience			
		needs a business case, Roots of usability.			
2		The Wheel : The UX design lifecycle Template	1	6	
	2.1	Introduction, A UX process lifecycle template, Choosing a process			
	instance for your project, The system complexity space				
	2.2	Meet the user interface team, Scope of UX presence within the			
		team, More about UX lifecycles.			
3		The UX design Process:	1,2,3	10	
		Contextual Inquiry: Eliciting Work Activity Data			
	3.1	Introduction, The system concept statement, User work activity			
		gathering, Look for emotional aspects of work practice, Abridged			
		contextual inquiry process, Data-driven vs. model-driven inquiry			
	3.2	Contextual Analysis, Extracting Interaction Design Requirements,			
		Constructing Design-Information Models.			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4		The UX design Process: Information Architecture, Interaction		10
	4.1	Design Thinking, Ideation, and Sketching:	1.3	-
		Introduction, Design paradigms, Design thinking, Design	,	
		perspectives, User personas, Ideation, Sketching, More about		
		phenomenology		
	4.2	Mental Models and Conceptual Design: Mental Models,		
		Conceptual design, Storyboards, designing influencing user		
		behavior, design for embodied interaction.		
	4.3	Wireframes and Prototyping: wireframes, depth and breadth of a		
		prototype, Fidelity of prototypes, interactivity of prototypes,		
		software tools in prototypes.		
5		UX Evaluation , Analysis and Reporting		10
	5.1	UX goals, metrics and targets: UX goals, UX target tables, UX	1,2	
		metrics.		
	5.2	UX Evaluation Techniques: Formative Vs Summative evaluation		
		and its types, types of evaluation data, some data collection		
		techniques, variations in formative evaluation results.		
	5.3	Analysis and Reporting: Quantitative and qualitative data		
		analysis and reporting.		
6		UX Design guidelines		2
	6.1	UX design guidelines and examples.	1	
Total				42

- [1] Rex Hartson and Pardha Pyla, The UX Book, MK publications.
- [2] Jesmond Allen and James Chudley, Smashing UX Design, John Wiley and sons
- [3] steve krug, Don't make me think
- [4] Russ Unger and Carolyn Chandler ,A Project Guide to UX Design, Peachpit Press
- [5] Jesse James Garrett, The Elements of User Experience, AIGA, New Riders
- [6] Donald A. Norman, "The design of everyday things", Basic books.
- [7] Wilbert Galitz, The Essential Guide to User Interface Design, Second Edition, Wiley Publications

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
	PG Laboratory –III (Network Analysis and Design Laboratory)			2			1	1
CEI 021		Examination Scheme						
CEL921		ISE		MSE		ESE		Total
		40		-			20	60

Pre-requisite Course Codes		e Codes	Computer Networks,				
			CE921(Network Analysis and Design)				
At the end of	successi	ful complet	ion of the course, students will be able to				
	CO1	Classify net	Classify network services, protocols and architectures, explain why they are layered.				
	CO2	Choose key	Internet applications and their protocols, and apply to develop their own				
Course		applications	s using the sockets API.				
Outcomes	CO3	Clarify dev	elop effective communication mechanisms using techniques like connection				
		establishme	stablishment, queuing theory, recovery Etc.				
	CO4	Clarify vari	ous congestion control techniques.				

Experiment Details	Ref.	Marks
 PART A: Implement the following using C/C++: 1. Write a program to transfer the contents of a requested file from server to the client using TCP/IP Sockets (using TCP/IP Socket programming). 2. Write a program to archive Traffic management at Flow level by implementing Closed Loop Control technique. (Leaky Bucket Algorithm) 3. Write a program to implement dynamic routing strategy in finding optimal path for data transmission. (Bellman ford algorithm). 4. Write a program to implement Link State Routing (Dijkstra Algorithm). 5. Write a program for implementing the error detection technique while data transfer in unreliable network code using CRC (16-bits) Technique. 6. Write a program for providing security for transfer of data in the network. (RSA Algorithm) 7. Write a program for encrypting 64 bit playing text using DES algorithm. 	Ref. 1,2	Marks 20
	Experiment DetailsPART A: Implement the following using C/C++:1. Write a program to transfer the contents of a requested file from server to the client using TCP/IP Sockets (using TCP/IP Socket programming).2. Write a program to archive Traffic management at Flow level by implementing Closed Loop Control technique. (Leaky Bucket 	Experiment DetailsRef.PART A: Implement the following using C/C++:1,21. Write a program to transfer the contents of a requested file from server to the client using TCP/IP Sockets (using TCP/IP Socket programming).1,22. Write a program to archive Traffic management at Flow level by implementing Closed Loop Control technique. (Leaky Bucket Algorithm)1,23. Write a program to implement dynamic routing strategy in finding optimal path for data transmission. (Bellman ford algorithm).1,24. Write a program to implement Link State Routing (Dijkstra Algorithm).1,25. Write a program for implementing the error detection technique while data transfer in unreliable network code using CRC (16-bits) Technique.1,26. Write a program for providing security for transfer of data in the network. (RSA Algorithm)1,27. Write a program for encrypting 64 bit playing text using DES algorithm.1,2

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

2	PART B: Simulation Programs using OPNET /NS2 or any other	1,2,3	20
	equivalent software		
	1. Simulate a 3 node point to point network with duplex links		
	between them. Set the Queue size and vary the bandwidth and find		
	the number of packets dropped.		
	2. Simulate a four-node point-to-point network, and connect the links		
	as follows: n0->n2, n1->n2 and n2->n3. Apply TCP agent changing		
	the parameters and determine the number of packets sent/received by		
	TCP/UDP		
	3. Simulate the different types of internet traffic such as FTP and		
	TELNET over network and analyze the throughput.		
	Total N	Aarks	40

- [1] **Douglas E Comer,** "Internetworking with TCP/IP, Principles, Protocols and Architecture" 6th Edition, PHI - 2014
- [2] Uyless Black "Computer Networks, Protocols, Standards and Interfaces" 2nd Edition PHI
- [3] Behrouz A Forouzan "TCP/IP Protocol Suite" 4th Edition Tata McGraw-Hill
- [4] Larry **Peterson and Bruce S Davis** "Computer Networks : A System Approach" 5th Edition, Elsevier -2014

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
	PG Laboratory –IV (High Performance Computing Laboratory)			2			1	1
CEI 022		Examination Scheme						
CEL922		ISE		MSE		ESE		Total
		40		-			20	60

Pre-requisite Course Codes			CE44						
			CE45						
			CE62						
			CE922(High Performance Computing)						
At the end of successful completion of the course, students will be able to									
	CO1	Understand	Understand the different parallel computing approaches and platforms to						
		achieve Hig	h Performance Computing.						
Course	CO2	Determine	Determine the communication pattern and network technology for High						
Outcomes		Performance Computing							
	CO3	Design High	Design High Performance Computing System using MPI and OpenMP.						
	CO4	Perform het	erogeneous Computing using GPGPU and OpenCL.						

Exp. No.	Experiment Details	Ref.	Marks
1	First OpenMP program: The aim of this lab is to develop our first		05
	OpenMP program and write some non-trivial OpenMP programs. We		
	will use a few OpenMP constructs and functions that are in fact very		
	powerful for parallelising most C programs. Although we will use		
	further constructs in the future labs and also in the project. You can		
	compile openmp programs by using the compiler flag gcc –		
	fopenmp file.c		
2	High performance computation of Pi	1,2,3	05
3	How to access the cluster: We have set up a HPC cluster for this		05
	unit and you need to do the programming projects on the cluster. You		
	can also write your lab code on the cluster. The cluster should be		
	accessible both on and off campus.		
4	Project 1: Parallelization of column-wise matrix collisions		10
	M is a data matrix of n rows and k columns where, Mi represents ith		
	row-vector and Mj represents jth column-vector as the figure below.		
	Each row-vector is of size k and each column-vector is of size n. Mij		
	represents a data element from row i and column j. The value of each		
	data element Mij lies between 0 and 1. Assume that there is no		
	missing value in this n x k matrix M.		
5	How to run MPI code on the cluster		05

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

6	Project -2: A combined MPI and OpenMP implementation of		10
	Parallelization of column-wise matrix collisions:		
	This project is a continuation from the first project. The aim of the		
	project is to implement the program from the first project into a		
	combined MPI-OpenMP framework. This is quite a common		
	apparoach for exploiting both coarse and fine grain parallelism in		
	programs. A problem is partitioned coarsely at the top level and		
	finely within each individual part. The coarse level partitioning is		
	done using MPI and the finer level partitioning is usually done on a		
	multi-core machine or on a Graphics Processing Unit (GPU).		
	The aim of the project is to partition the matrix into smaller parts and		
	distribute these parts to different computers by using MPI. The		
	computation on each part would now occur within the individual		
	nodes using the cores available on those nodes.		
	The coding in the project will be minimal; it is the case quite often		
	that parallelizing a piece of sequential code requires only small but		
	well thought out modifications.		
	Total N	Iarks	40

- [1] Kai Hwang, Naresh Jotwani, "Advanced Computer Architecture: Parallelism, Scalability, Programmability", Mcgraw-Hill Education, SECOND Edition, 2008.
- [2] Ananth Grama, "Introduction to Parallel Computing", Addison Wesley, SECOND Edition, 2003.
- [3] Rajkumar Buyya, "High Performance Cluster Computing: Architectures and Systems Volume 1", Prentice Hall PTR, FIRST Edition, 1993.
- [4] Michael J. Quinn, "Parallel Programming in C with MPI and OpenMP", McGraw HIll, FIRST Edition, 2003
- [5] Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry, Dana Schaa, "*Heterogeneous Computing with OpenCL*", Morgan Kaufmann, FIRST Edition, 2011

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
CEL923	PG Laboratory V: UXD lab			2			1	1
		Examination Scheme						
		ISE		MSE		ESE		Total
		40		-			20	60

Pre-requisite Course Codes			Mobile and web technologies, software Engineering
	CO1	Demonstrate	the use of UX tools.
Course	CO2	Create real li	ife application with end-to-end understanding of User experience
Outcomes		practices.	
Outcomes	CO3	Develop map	based UI for social and technical task.
	CO4	Evaluate the	design of the application using User Experience principles.

Exp. No.	Experiment Details	Ref.	Marks
1	To Study of open source UX tools (Justinmind Prototype, Pidoco,	1,2	5
	Marvel Prototype) and create UX design for a given problem		
	definition.		
2	Design a Map based UI(Mobile User) forTransport applications like	1,2	5
	Ola,Uber etc.		
3	Design a Map based UI(Web User) for Mumbai Dabbawalas with	1,2	5
	localization feature.		
4	Pick a website/app that you use on a daily basis (eg. facebook, gmail,	1,2	5
	whatsapp, zomato, etc). Evaluate the product based on user experience		
	principles and give suggestions for improvement. Explain usability		
	testing process for the same.		
5	Museum of London: Visit the application on	1,2	5
	http://www.webcredible.com/case-studies/non-profit/museum-london/		
	Study and identify the challenges in design and evaluate UX principles		
	applied for helping visitors to engage with the past, present and future.		
	Suggest any such App design in Indian scenario for any one Museum		
	in India. Explain usability testing for the same. Localization		
	framework for designing the localizable UI.		
6	Design UI for kinder garden student to teach mathematics.	1,2	5
7	Design UI for any differently abled users	1,2	5
8	Design UI for analysis of number of children suffering from juvenile	1,2	5
	diabetic children in India. The design aims at providing solutions for		
	improving quality treatment and making the treatment affordable.		
Total			40

Note: Students should study and review the literature for the above mentioned case studies. They should prepare and submit the report including the conceptual design, site map, screen design layout,

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

wireframes, gray scale design of the interface, final sketch of the design, ordering screen before implementing the design for the assigned task. They should study the UX principles, draw the information architecture if necessary and finally test it usability. The Final design should be deliverable to the user.

- [1] Rex Hartson and PardhaPyla, The UX Book, MK publications.
- [2] Russ Unger and Carolyn Chandler , A Project Guide to UX Design, Peachpit Press

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	Т	P	L	Т	Р	Total	
	Internet of Things(IOT)	3			3			3	
CEE02A				Ex	aminatio	amination Scheme			
CEE72A			ISE		MSE	ESE	1	Total	
		20			20	60		100	

Pre-requisite Course Codes		Codes	CEL35,				
			CE45,				
			CE52				
At the end of successful completion of the course, students will be able to							
	CO1	Define Internet of Things and its components.					
Course	CO2	Perform Io	Perform IoT Systems management.				
Outcomes	CO3	Design IoT	Design IoT systems through Python, Physical Servers and Cloud Solution.				
	CO4	Analyze th	Analyze the system through Data Analytics tools.				

Module	Unit	Topics	Dof	Hrc
No.	No.		Kel.	1115.
	1.1	Introduction to IoT – Definition, Characteristics, Physical and Logical Designs, IoT Protocols, IoT Communications Models and API, IoT Enabling Technologies, IoT Levels and Deployment Templates, IoT Examples, M2M	1	3
1	1.2	RFID Technology – Working of RFID, Components of an RFID system, RFID Transponder (tag) classes, Standards, System architecture, Localization and Handover Management, Technology considerations, Performance Evaluation, Applications	2	4
	1.3	Wireless Sensor Networks – History, Sensor Nodes, Connecting Nodes, Networking Nodes, Securing Communication	2	2
	2.1	IoT System Management – SNMP, Network Operator Requirements,	1	3
2	2.2	IoT System Management – NETCONF, YANG	1	2
2	2.3	IoT Platform Design Specification – Requirements, Process, Domain Model, Service, IoT Level, Function, Operational view, Device and Component Integration, Application Development	1	3
	3.1	IoT Systems Logical Design – Python Data Types, Type conversion, Control Flow	1	3
3	3.2	IoT Systems Logical Design – Python Functions, Modules, File Handling, Classes, Python Packages for IoT.	1	2
	3.3	IoT Physical Servers – Cloud Storage Models, Communication APIs, WAMP, Xively Cloud, Django	1	3

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.1	IoT Cloud Services - RESTful Web API, Amazon Web Services for IoT				
4	4.2	IoT Data Analytics – Apache Hadoop, Batch Data Analysis, Hadoop YARN	1	3		
	4.3	IoT Data Analytics – Apache Oozie, Apache Spark, Apache Storm, Chef, Chef Case Studies, Puppet, NETCONF-YANG	1	3		
	5.1	Arduino Programming Building Blocks – Basics, Internet Connectivity, Communication Protocols.	3	4		
5	5.2	IoT Patterns : Real-time Clients, Remote control, On-demand Clients, Web Apps.	3	3		
	5.3	IoT Patterns: Machine to Human, Machine to Machine, Platforms	3	2		
Total 4						

In-Semester Examination (ISE): The assessment includes the submission of a term paper by each student on the contemporary work related to Internet of Things.

- [1] Arsheep Bahga, Vijay Madisetti, "internet of Things: A Hands-On Approach", University Press, FIRST Edition, 2015.
- [2] Hakima Chaouchi, "The Internet of Things: Connecting Objects", Wiley-ISTE, FIRST Edition, 2010.
- [3] Adeel Javed, "Building Arduino Projects for the Internet of Things: Experiments with Real-World Applications", Apress, FIRST Edition, 2016.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned					
Code		L	Т	Р	L	Т	Р	Total		
CEE92B	Information and	3			3			3		
	Communication	nmunication Examination Scheme								
	Technologies (ICT) for	ISE N		MSE	ESE		Total			
	Social Cause		20		20	60		100		

Pre-requisite Course Codes							
At the end of successful completion of the course, students will be able to							
	CO1	To understand technologies used in ICT.					
Course Outcomes	CO2	To design and implement ICT application for societal benefits					
	CO3	To demonstrate use of emerging technology for social applications					
	CO4	To apply Knowledge based ICT tool for social cause					
	CO5	To develop an ICT tool as an expert system for different domains					

Module No	Unit No	Topics	Ref.	Hrs.
1	110.	Basics of ICT :		
	1.1	Introduction to ICT, Challenges and opportunities in using	1	4
		technology for a social cause, Understanding the social and		
		cultural influences that affect users. Creating an ICT – handling		
		text, data and media		
2		Communication Techniques in ICT		
	2.1	Mobile Techniques – CDMA, Mobile wireless WiMAX,	1,2,3,4	8
		Advanced wireless technologies, Bluetooth		
		Satellite Techniques – architecture AND working principles		
		GPS/GPRS		
	2.2	Cloud computing – Introduction, cloud services, Cloud service		
		providers		
	2.3	GIS– Working principle and architecture for ICT		
3		Data acquisition in ICT		
	3.1	Recognition systems RFID,OMR	6	8
		Data acquisition process for MEMS devices		
		Sensors – Programming, communication with cloud.		
	3.2	Formation of social groups and interaction analysis Facebook,		
		Twitter, Blogs, Forums, mailing lists etc		
4		Data Management in ICT		
	4.1	Data management, Data storage structures	6	6
5		Knowledge management in ICT		
	5.1	Knowledge elicitation, Knowledge Engineering Methodology,	6	8
		Knowledge representation and visualization techniques Automatic		
		discovery programs		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.2	Data visualization, Auditing knowledge management, Linking		
		knowledge management to business performance		
6		ICT applications and Social Audit		
	6.1	Study of ICT applications in various domains such as Agriculture,	1,7,8	8
		Healthcare, Education, SCM, Finance, Law.		
	6.2	Social Audit: The Social Audit Tool (SAT), Social Audit Tool,		
		Social Auditing, Characteristics of the SAT, Uses of the SAT,		
		Benefits of the SAT, The SAT Methodology, Purposes, Method,		
		and Approach of the SAT, Implementing the SAT, The Social		
		Auditor		
			Total	42

References:

[1] Paul Warren , Jhon Davies, David Brown , Wiley Publication ,ICT Futures :Delivering

Pervasive Realtime And Secure Services, Wiley Publication

- [2] Jochen Schiller, "Mobile communications", Addison wisely, Pearson Education
- [3] Dr.K.Elangovan, GIS Fundamentals, Applications and Implementation, New India Publications.
- [4] Anthony T. Velte, Cloud Computing : A practical Approach, Tata McGraw-Hill
- [5] NadimMaluf, An Introduction to Microelectromechanical systems Engineering, ,Artech House
- [6] Jessica Keyes, Knowledge management business intelligence, and content management:

The IT practitioner's Guide by

- [7] S.R. Verma, ICTs for transfer of technology tools and techniques, New India
- [8] USAID, Social Audit Tool Handbook, Using the Social Audit to Assess the Social Performance of Microfinance Institutions, 2008.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
	Machine Vision(MV)	3			3			3
CFF02C		Examination Scheme						
CEE72C		ISE			MSE	ESE		Total
		20			20	60		100

Pre-requisite Course Codes			Digital Image Processing
At the end of successful compl			tion of the course, students will be able to
	CO1	Understa	and the concepts of recognition methodology and image
Course		enhance	ment in frequency domain.
Outcomes	CO2	Analyze	the various methods of digital manipulation of images.
	CO3	Analyze	the various image compression techniques.
	CO4	Understa	and the Projective geometry

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Recognition Methodology and Image Enhancement in		05
		Frequency Domain		
	1.1	Recognition Methodology: Conditioning, Labeling, Grouping,	1	1
		Extracting, And Matching.		
	1.2	Frequency domain: Introduction to the Fourier transform and	2	1
		frequency domain concepts,		
	1.3	Filters: Smoothing frequency-domain filters, Sharpening frequency	2	3
		domain filters. (Ideal, Butterworth and Gaussian). Homomorphic		
		Filtering		
2		Image Segmentation and Region Analysis		08
	2.1	Edge Linking using Hough Transform, Thresholding (Otsu's	1,2,	04
		method), and Region growing Segmentation, Split and Merge	3,4	
		Technique.		
	2.2	Connected Component Labeling: Iterative Algorithm and Classical	1	02
		Algorithm		
	2.3	Region Analysis: Region properties, External points, Spatial	1	02
		moments, Mixed spatial gray-level moments, Boundary analysis:		
		Signature properties.		
3		Morphological Image Processing		08
	3.1	Binary Morphological Operators, Opening , Closing	2,5	02
	3.2	Hit-or-Miss Transformation, Boundary Extraction, Region Filling,	5,7	04
		Thinning and Thickening,		
	3.3	Morphological algorithm operations on Gray scale Images	2,5	02
4		Image Representation and Description		06
	4.1	Image Representation: Chain Code, Polygonal approximations,	2,5	02

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Boundary Segments		
	4.2	Boundary and Regional Descriptors: Shape Numbers, Fourier	2,5	02
		Descriptors, Topological Descriptors		
	4.3	Use of Principal components for Description.	2	02
5		Image Compression		09
	5.1	Introduction, Redundancy, Fidelity Criteria, Elements of	2,3	03
		Information theory.		
	5.2	Lossless Compression Techniques : Huffman Coding, Run Length	5,6	03
		Coding, Arithmetic Coding, LZW Coding, Differential PCM,		
	5.3	Lossy Compression Techniques: Improved Gray Scale	2,3	03
		Quantization, Transform Coding, Vector Quantization, JPEG,		
		MPEG-1.		
6		Geometry for 3-D Vision and Knowledge-Based Vision		06
	6.1	3D vision tasks: Marr's theory, The 3D representation	3	01
	6.2	Geometry for 3-D Vision: Projective geometry, camera calibration,	3,7	03
		Stereo vision		
	6.3	Control strategies: Hierarchical control, Heterarchical Control	1,3	02
			Total	42

- [1] Robert Haralick and Linda Shapiro, "Computer and Robot Vision", Vol I, II, Addison Wesley, 1993.
- [2] Rafel C. Gonzalez and Richard E. Woods, "*Digital Image Processing*", Pearson Education Asia, Third Edition, 2009,
- [3] Milan Sonka ,Vaclav Hlavac and Roger Boyle," *Image Processing, Analysis, and Machine Vision* ", Thomson, Second Edition.
- [4] B. Chandra and D. Dutta Majumder, "*Digital Image Processing and Analysis*", Prentice Hall of India Private Ltd
- [5] S Jayaraman, S Esakkirajan, and T Veerakumar "*Digital Image Processing* ", Tata McGraw-Hill Education Private Limited
- [6] Khalid Sayood, "Introduction to DATA COMPRESSION", ELSEVIER, Third Edition.
- [7] Ramesh Jain, Rangachar Kasturi, and Brian G. Schunck, "MACHINE VISION", McGraw-Hill INTERNATIONAL EDITIONS.
- [8] Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition
- [9] S. Sridhar, "Digital Image Processing", Oxford University Press.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	P	L	Т	Р	Total
	Machine Learning(ML)	3			3		-	3
CFF02D		Examination Scheme						
CEE92D			ISE		MSE	ESE	,	Total
		20			20	60		100

Pre-requisite Course Codes			Fundamentals of AI and Soft Computing,					
			Statistics and probability					
At the end of successful complet			on of the course, students will be able to					
	CO1	Exhibit the	xhibit the knowledge about basic concepts of Machine Learning					
Course	CO2	Identify ma	dentify machine learning techniques suitable for a given problem					
Outcomes	CO3	Solve the problems using various machine learning techniques						
	CO4	Apply Dime	ensionality reduction techniques.					
	CO5	Design appl	ication using machine learning techniques					

Module	Unit	Topics	Ref	Hrs.
No.	No.			
1		Introduction to Machine Learning		4
	1.1	Machine Learning, Types of Machine Learning, Issues in	1,2,3,4	
		Machine Learning, Application of Machine Learning, Steps		
		in developing a Machine Learning Application.		
2		Introduction to Neural Network		
	2.1	Introduction – Fundamental concept – Evolution of Neural	6	4
		Networks – Biological Neuron, Artificial Neural Networks,		
		NN architecture, Activation functions, McCulloch-Pitts		
		Model.		
3		Learning with Regression and trees:		10
	3.1	Learning with Regression: Linear Regression, Logistic	2,3	
		Regression.		
		Learning with Trees: Decision Trees, Constructing		
		Decision Trees using Gini Index, Classification and		
		Regression Trees (CART).		
4		Learning with Classification and clustering:		10
	4.1	Classification: Rule based classification, classification by	3,4	
		Bayesian Belief networks, Hidden Markov Models.		
		Support Vector Machine: Maximum Margin Linear		
		Separators, Quadratic Programming solution to finding		
		maximum margin separators, Kernels for learning non-linear		
		functions.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	4.2	Clustering: Expectation Maximization Algorithm,	2	
		Supervised learning after clustering, Radial Basis functions.		
5		Dimensionality Reduction:		8
	5.1	Dimensionality Reduction Techniques, Principal	1,4	
		Component Analysis, Independent Component Analysis,		
		Single value decomposition.		
6		Machine Learning Applications		
	6.1	Learning Associations, Classification, Regression,	2	
		Unsupervised learning.		6
		Total		42

- [1] Peter Harrington "Machine Learning In Action", DreamTech Press
- [2] Ethem Alpaydın, "Introduction to Machine Learning", MIT Press
- [3] Tom M.Mitchell "Machine Learning" McGraw Hill
- [4] Stephen Marsland, "Machine Learning An Algorithmic Perspective" CRC Press
- [5] J.-S.R.Jang "Neuro-Fuzzy and Soft Computing" PHI 2003.
- [6] Samir Roy and Chakraborty, "Introduction to soft computing", Pearson Edition.