

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

B.Tech. (Computer Engineering) and B.Tech. (Information Technology) Syllabus (Semester I-IV)

2020 Iteration (w.e.f. 2020-21)

UG Syllabus 2020 iteration/CS/IT pg. 1

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

			Sem III						
No	Туре	Code	Course	L	Т	Р	0	Е	С
1	BSC	MA203	Probability and Statistics	3	0	0	5	08	3
1	BSC*	MA202	Foundation of Mathematics-I*	3	0	0	6	09	3
2	РС	CS201/IT201	Discrete Structures and Graph	3	0	0	4	07	3
			Theory						
3	РС	CS202/IT202	Data Structures	3	0	2	5	10	4
4	РС	CS203/IT203	Computer Architecture and	3	0	2	4	09	4
			Organization						
5	РС	CS204/IT204	Database Management Systems	3	0	2	5	10	4
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	03	1
7	HSSE	HSEX1	HSS-I	2	0	0	3	05	2
			TOTAL	17	0	6	29	52	21

*Only for Lateral Entry Students

			Sem IV						
No	Туре	Code	Course	L	Т	Р	0	Е	С
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3
1	BSC*	MA204	Foundation of Mathematics-II	3	0	0	6	09	3
2	РС	CS205/IT205	Design and Analysis of Algorithms	3	0	2	5	10	4
3	РС	CS206/IT206	Operating Systems	3	0	2	5	10	4
4	PC	CS207/IT207	Computer Communications and	2	0	n	5	10	4
			Networks	5	0	2	5	10	
5	SBC	CS208/IT208	Mini Project-I	0	0	0	4	04	2
6	ABL	SVXX/STXX	SEVA II or III /SATVA II or III	0	0	0	3	01	1
7	HSSE	HSEX2	HSS-II	2	0	0	3	05	2
8	SBC	AS201	Professional Communication Skills	1	0	2	2	05	2
9	S/M	SCX1/MNX1	SCOPE-I/ <mark>Minor-I</mark>						3
			TOTAL	14	0	10	32	56	22

*Only for Lateral Entry Students

	Second Summer for HSC students									
No	Туре	Code	Course	L	Т	Р	0	Е	С	
1	MLC	AS202	Constitution of India				06	06	NC	

	Second Summer (For Lateral Entry Students)											
No	Туре	Code	Course	L	Т	Р	0	Е	С			
1	BSC	MA201	Linear Algebra	2	0	2	5	09	3			
1	BSC	MA203	Probability and Statistics	3	0	0	5	08	3			
2	MLC	AS202	Constitution of India				06	06	NC			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Semester-III

UG Syllabus 2020 iteration/CS/IT pg. 49

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	-	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	Total		
		3	0	0	4	7	3	0	0	3		
(PC)	Discrete Structures and	Examination Scheme										
		Component			ISE		MSE		SE	Total		
CC201 /IT201	Graph Theory	Theory			75		75		L 50	300		
CS201/11201		Laboratory										

Pre-requisite Co	urse Codes, if any.						
Course Objectiv	e: To teach students how to think logically and mathematically. It provides the						
mathematical foundation that is used in most areas of computer science.							
Course Outcomes (CO): <i>At the End of the course students will be able to</i>							
XXXXX.1	Solve problems using set theory, logic and its various proof techniques.						
XXXXX.2	Apply the concepts of relations, functions, lattices and recurrence relations to						
	solve problems						
XXXXX.3	Apply the concepts of graph, trees and their various types with their traversing						
	techniques to solve problems.						
XXXXX.4	Apply the basics of coding theory and cryptography to solve real world problems.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO1	PO1	PO1
										0	1	2
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
XXXXX.1						
XXXXX.2						
XXXXX.3						
XXXXX.4						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

RememberUnderstandApplyAnalyzeEvaluateCreate
--

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module	Unit	Topics	Pof	Urc		
No.	No.	Τοριες	Rei.	піз.		
1	Title	Set Theory, Logic and Proofs	1, 2			
	1.1	Finite and infinite set, Union, Intersection, Disjoint, and Difference of two sets. Power Set, Partition of Sets, Ordered Sets, De Morgan's Laws, Principle of Inclusion Exclusion		2		
	1.2	Predicates, Propositions, Conditional Propositions, Logical Connectivity, Proposition calculus, Universal and Existential Quantifiers, First order logic, Equivalence, Normal Forms, Introduction to proofs, Mathematical Induction, Strong Induction, Well-ordering principle, Logical inference		6		
2	Title	Relations, Functions and Lattices	1, 2			
	2.1	Product Sets and Partitions, Paths in relations and Diagraphs, Properties of Relations, Closure of Relation, Equivalence Relations, Operations on Relations, Warshall's Algorithm, Partially Ordered Sets, External Elements of Partially Ordered Sets, Hasse Diagram		8		
	2.2	Composition of Functions, Invertible Functions, Recursive Functions, Hashing, Pigeon hole Principle, Extended PHP		3		
	2.3 Lattice, Sub lattice, Isomorphic Lattices, Properties of Lattice, Special Types of Lattices					
	2.4	Recurrence Relations – Introduction, Linear Recurrence Relations with constant coefficients, Homogeneous solutions, Particular Solutions, Total Solutions, Solution by the method of Generating functions, solving Recurrence Relations		5		
3	Title	Graph Theory	1, 2	4		
	3.1	Concepts and terminologies, Graphs as Model (Konigsberg Bridge Problem)				
	3.2	Matrices, Isomorphism, Bipartite Graphs, Directed Graphs				
	3.3	Minimal Spanning Trees-Prim's Algorithm and Kruskal's Algorithm				
4	Title	Graph connectivity	1, 2	6		
	4.1	Cycles – Transport Networks, Max Flows, Matching Problems, Maximum Bipartite Matching, Perfect Matching				
	4.2	Euler Paths- Circuits, Hamiltonian Paths- Circuits				
	4.3	Coloring Graphs, Chromatic Polynomial, Planer Graphs				
5	Title	Coding Theory	1, 2	4		
	5.1	Hamming Code, Minimum Distance				
	5.2	Number Theory, Modular Arithmetic and applications to cryptography; Diffie-Hellman Algorithm				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

6	Self-	Algebraic Structures - Semi group, Monoids,	Groups,	Cyclic	1, 2	5*
	Study	groups, Abelian groups, Normal Subgroups				
			Total (*	Not incl	uded)	42

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Discrete Mathematics and it's applications	Seventh	Kenneth H. Rosen	Tata McGraw- Hill	2013
2	Discrete Mathematical Structures	Sixth	Bernad Kolman, Robert Busby, Sharon Cutler Ross, Nadeem-ur-Rehman	Pearson Education	2015

Sr. No	Title	Edition	Authors	Publisher	Year
1	Elements of Discrete Mathematics	Fourth	C. L. Liu	Tata McGraw- Hill	2012
2	Introduction to graph Theory	Second	Douglas B. West	Pearson Education	2015
3	Discrete Mathematical Structures with Applications to Computer Science	First	Jean-Paul, Tremblay R. Manohar	Tata McGraw- Hill	1987

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teach	(Hrs/v	Credits Assigned						
(Category)	Course Name	L	Т	Р	0	Ε	L	Т	Р	Total
Code										
(BSC)		2	1	0	0	3	2	1	0	3
		Examination Scheme								
	Foundations of Mathematics-I	Comp	onent		ISE		MSE	E	SE	Total
MA202	Wathematics-i	Theory			75		75		L 50	300
		Laboratory								

Pre-requisite	Course Codes, if any								
Course Obje	ctive: To develop basic foundation of mathematical skills.								
Course Outcomes (CO): At the End of the course students will be able to:-									
MA202.1	Differentiate a function of one variable and partially differentiate a function of more								
	than one variable.								
MA202.2	Apply the concept of partial differentiation to find extreme values of a given								
	function.								
MA202.3	Find nth order derivative of a given function.								
MA202.4	Expand a given function as a power series.								
MA202.5	Perform operations on matrices and find inverses and determinants of them.								
MA202.6	Perform vector operations and compute dot products and cross products between								
	them.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
MA202.1												
MA202.2												
MA202.3												
MA202.4												
MA202.5												
MA202.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA202.1						
MA202.2						
MA202.3						
MA202.4						
MA202.5						
MA202.6						

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Theory Component

Module No.	Unit No.	Topics	Ref	Hrs.
1	Title	Differential Calculus	1,2	18
	1.1	Partial fractions. Derivatives of standard functions, product and quotient rule for differentiation.		04
	1.2	Partial derivatives of first and higher order, composite differentiation		03
	1.3	Application of partial derivatives: Local Maxima and Minima of functions of two variables.		02
	1.4	Successive Differentiation: Proofs of nth derivatives of standard functions. Use of partial fractions to calculate nth derivatives of given functions. Leibnitz theorem for nth derivative of product of two functions.		05
	1.5	Infinite series: expansion of functions in powers of x using maclaurin series. Taylor's series.		04
2	Title	Matrices	1,2	07
	2.1	Addition and scalar multiplication of matrices. Matrix multiplication, types of matrices.		03
	2.2	Elementary row transformations, finding inverses using matrices, determinants and its properties		04
3	Title	Vectors	1,2	03
	3.1	Vector definition, addition, scalar multiplication, dot product of		03
		two vectors, angle between two vectors, cross product.		
			Total	28

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering	Forty Forth	Dr. B. S. Grewal	Khanna Publications	2020
	Mathematics				

Sr. No	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering	Tenth	Erwin	John Wiley & Sons	2011
	Mathematics		Kreysizg		
2	Advanced Engineering	Twenty	H.K.Dass	S. Chand Publications	2014
	Mathematics	Eighth			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course	Course Name	Teach	(Hrs/v	Credits Assigned						
Code	course manie	L	т	Р	0	Е	L	Т	Р	Total
(BSC)	Probability and	3	0	0	5	8	3	0	0	3
		Examination Scheme								
		Component			ISE		MSE	E	SE	Total
	Statistics	Theory			75		75		.50	300
IVIAZU3		Laboratory								

Pre-requisite	Course Codes, if any.					
Course Object	ctive: To give an exposure to the students the basic concepts of Probability and					
Statistical methods and their application.						
Course Outcomes (CO): At the End of the course students will be able to						
MA203.1	Familiarize with basic probability axioms, rules and their applicability.					
MA203.2	Identify the characteristics of various discrete and continuous distributions.					
MA203.3	Find unbiased and efficient estimates using estimation theory.					
MA203.4	Test the hypothesis for means and variances using't'& F; chi-square distribution					
	tests.					
MA203.5	Find Correlation and Regression and fit different types of curves.					

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
MA203.1												
MA203.2												
MA203.3												
MA203.4												
MA203.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
MA203.1							
MA203.2							
MA203.3							
MA203.4							
MA203.5							

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create
---------------------	-------	---------	----------	--------

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Theory Component

Module	Unit No	Topics	Ref.	Hrs.
1	Title	Probability and Random Variables	1, 2	12
	1.1	Classical, relative frequency and axiomatic definitions of probability, addition rule and multiplication rule. Conditional Probability, Bayes' theorem and independence.		04
	1.2	Discrete, continuous and mixed random variables, probability mass function(PMF), Probability Density Function(PDF) and cumulative distribution function(CDF). Joint Distributions: Joint, marginal and conditional distribution.		04
	1.3	Mathematical expectation, moments, moments generating function, Chebyshev's inequality.		04
2	Title	Probability Distributions	1, 2	12
	2.1	Standard discrete distributions: Bernoulli, Binomial, Poisson and Geometric distributions, Probability density function, Cumulative distribution function, Expectation and Variance,		06
	2.2	Standard continuous distributions – Uniform, Normal, Exponential, Joint distribution and Joint density functions		06
3	Title	Test of Hypothesis and Significance	1, 2	12
	3.1	Statistical hypothesis, Null and Alternate hypothesis, test of hypothesis and significance, Type I and Type II errors, Level of Significance, Tests involving the Normal distribution, One-Tailed and Two-Tailed tests, P value.		03
	3.2	Special tests of significance for Large samples and Small samples (F, chi- square, z, t- test), ANOVA.		09
4	Title	Correlation and Regression	1, 2	06
	4.1	Correlation, Rank correlation, Regression Analysis, Linear and Non-linear Regression, Multiple regressions, Curve fitting by method of least squares, fitting of straight lines, Polynomials, Exponential curves.		
5	Self	1. Applicability of Bayes theorem		01*
	Study	 Proofs for mean & variance for all distribution: included in module 2 		02*
		3. Examples to test goodness of fit using Chi-square		02*
Total				42

* Not included in Total 42 hrs.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to Probability and Statistics for Engineers and Scientists	Fourth	Sheldon M. Ross	Academic Foundation	2011
2	Probability and Statistics for Engineers and Scientists	Eighth	E. Walpole, R. H. Mayers, S. L. Mayers and K. Ye	Pearson Education	2007

Sr. No	Title	Edition	Authors	Publisher	Year
1	Probability and Statistics in Engineering	Fifth	Douglas C. Montgomery	Wiley India	2012
2	Probability & Statistics	Third	Spiegel, M. R., Schiller, J. and Srinivasan, R. A.	Tata McGraw Hill	2010

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	1	Гeachiı (Hrs	ng Sch s/wee	neme k)		с	redits	s Assig	gned
Code		L	Т	Ρ	0	Ε	L	Т	Р	Total
		3	0	2	5	10	3	0	1	4
(PC)			E	ixami	nation	Scher	ne			
	Data Structures	Component			ISE		MSE		SE	Total
CC202 /IT202		The	Theory 75		75		75		.50	300
C3202/11202		Laboi	ratory		50				50	100

Pre-requis	site Course Codes, if any.	1. Problem solving using imperative programming				
Course Ob	jective: To introduce the fun	damentals and abstract concepts of Data Structures for				
Problem Solving.						
Course Ou	itcomes (CO):At the End of th	e course students will be able to				
XXXXX.1	Apply various operations of linear and non-linear data structures to given problems.					
XXXXX.2	Apply the concepts of Trees	and Graphs to a given problem.				
XXXXX.3	Apply various operations of I	neap data structures.				
XXXXX.4	Apply the concepts of hashi	ng on a given problem				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
XXXXX.1						
XXXXX.2						
XXXXX.3						
XXXXX.4						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

|--|

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module	Unit	Topics	Ref	Hrs
No.	No.			
1	Title	Introduction to Data Structures		
	1.1	Concept of Linear and Non linear Data Structures	1,2	1
	1.2	Stack: Stack as ADT, operations on stack,, Applications of Stacks	1,2	4
	1.3	Queue: Queue as ADT, Operations on Queue,, Applications of	1,2	4
	-	Queue, Types of Queue-Circular and Priority Queue		
	1.4	Linked List: Linked List as ADT, Operations on Singly Linked List.	1,2	6
		Types of linked list- Linear and circular linked lists, Doubly Linked		
		List, Circular Linked List and its operations, Generalized Linked		
		List (GLL) concept , Applications of linked List and Generalized		
		Linked List (GLL).		
2	Title	Trees		
	2.1	Trees as ADT, General tree v/s Binary Tree Terminology,	1,2	5
		Traversal of Binary Tree, Operations on Binary tree, Binary		
		Search Tree and its operations, Expression Tree		
	2.2	AVL Trees- Properties of AVL trees, Rotations, Insertion, and	1,2	4
		Deletion		
	2.3	Introduction to B tree- Insertion , Deletion.	1,2	3
3	Title	Graphs		
	3.1	Graph as ADT, Introduction To Graph, Representation of Graph-	1,2	3
		Adjacency Matrix, Adjacency List, Graph Traversal Technique		
4	Title	Heap Structure		
	4.1	Heap as ADT, Introduction to Heap Structures, Min Heap, Max	1,2	3
		Heap, Construction of Heap	-	
	4.2	Fibonacci heaps- Structure of Fibonacci heaps, Mergeable-heap,	1,2	5
		operations, Decreasing a key and deleting a node	-	
5	Title	Hashing		
-	5.1	Introduction to Hash Table. Hash functions. Collision Resolution	1.2	4
		Technique.	_,_	-
6	Self	Optimal Binary Search Tree and Red-Black Trees	1.2	5*
	Study		_,_	
<u> </u>			Total	42

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component, if any (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implement a given problem statement using Stack.
2	Implement a given problem statement using Queue
3	Implement a given problem statement using Linked List.
4	Implement a given problem statement using Doubly Linked List.
5	Implement a given problem statement using Binary Trees.
6	Implement insertion of node in AVL tree.
7	Implementation of expression tree
8	Implement Operations of Heap Structures.
9	Implement hash functions with different collision resolution techniques.
10	Apply Graph Traversal Technique on a given problem statement to solve the problem

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to Algorithms	Third	Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein	MIT Press	2009
2	Fundamentals of Computer Algorithms	Second	Horowitz E, Sahni S and S.Rajasekaran	Galgotia Publications	2010

Sr. No	Title	Edition	Authors	Publisher	Year
1	Classic Data	Second	Samanta Debasis	PHI	2009
	Structures				
2	Data Structures With C	First	Seymour Lipschutz	Schaum's Outline Series	2010

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course(Category)	Course Name	T	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total	
	Computer Architecture and	3	0	2	4	9	3	0	1	4	
(PC)		Examination Scheme									
		Comp	onent		ISE		MSE	E	SE	Total	
CC202 /IT202	Organization	Theory			75		75		50	300	
CS203/11203		Laboratory			50				50	100	

Pre-requi	site Course Codes, if any.	Digital Circuits	Digital Circuits & Systems, Any Programming Language					
Course Ol	bjective: Imparting concepts o	of each componei	nt of com	puter ar	chitecture tl	horo	ughly	/
with pract	tical aspects including memory	y systems and I/C) commu	nications	s with interfa	acing	3	
Course O	Course Outcomes (CO): At the End of the course students will be able to							
XXXXX.1	Explain basic computer structure and compare computer architecture models							
XXXXX.2	Design algorithms to solve AL	Design algorithms to solve ALU operations and memory mapping techniques						
XXXXX.3	Comprehend processor arc	chitecture with	various	design	methods	of (CPU	with
	comparative analysis							
XXXXX.4	Illustrate memory systems wi	ith design and ar	alysis of	mapping	; techniques	for o	cache	and
	virtual memory							
XXXXX.5	Analyze different parallel pro	cessing and pipe	elining co	ncepts w	vith pipelinir	ng ha	zards	5
XXXXX.6	Comprehend different types of I/O buses , compare and contrast different types of data							
	transfer methods and arbitrat	tion techniques						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												
XXXXX.5												
XXXXX.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
XXXXX.1						
XXXXX.2						
XXXXX.3						
XXXXX.4						
XXXXX.5						
XXXXX.6						

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Module	Unit	Topics	Rof	Hrs
No.	No.		Ner.	1115.
1	Title	Overview of Computer Architecture and Organization		
	1.1	Introduction of Computer Organization and Architecture, Basic	1	5
		organization of computer and block level description of the		
		functional units, Evolution of x86 Computers, Von Neumann		
		model, Harvard Model, Embedded system		
	1.2	Performance Issues: Designing for performance, Amdahl's Law,	1	
		Multi-core, GPGPU		
2	Title	Data Representation and Arithmetic Algorithms		6
	2.1	Number representation: Floating-point representation,	2,3	
		Floating point arithmetic, IEEE 754 floating point number		
		representation		
	2.2	Integer Data computation: Addition, Subtraction.	2,3	
		Multiplication: Signed multiplication, Booth's algorithm.		
	2.3	Division of integers: Restoring and non-restoring division	2,3	
3	Title	Processor Organization and Control Unit		9
	3.1	CPU Architecture, Register Organization	1,2,4	
		Instruction formats, basic instruction cycle. Instruction		
		interpretation and sequencing,		
		Case Study of 8086 architecture and Register Organization		
	3.2	Control Unit: Soft wired (Micro-programmed) and hardwired	2,4	
		control unit design methods. Microinstruction sequencing and		
		execution. Micro operations		-
	3.3	RISC and CISC: Introduction to RISC and CISC architectures and	2,4	
		design issues.		
4	Title	Memory Organization		11
	4.1	Introduction to Memory and Memory parameters.	1,2	
		Classifications of primary and secondary memories. Types of		
		RAM and ROM, Allocation policies, Memory hierarchy and		
		characteristics.		-
	4.2	Cache memory: Concept, architecture (L1, L2, L3), mapping	1,2	
		techniques. Cache Coherency, Interleaved and Associative		
		memory.		-
	4.3	Virtual Memory: Concept, Segmentation and Paging, Page	1,2,4	
		replacement policies		
5	Title	I/O Organization and Introduction to Parallel Processing		11
	5.1	Buses: Types of Buses, Bus Arbitration, BUS standards	2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	5.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	1,2	
	5,3	Introduction to parallel processing concepts, Flynn's classifications, pipeline processing, Pipeline stages, Pipeline Hazards	1,2,4	
6	Self Study	Comparative Study of microprocessors and micro architectures with respect to their important features. 8086 instructions and assembler directives with addressing modes with memory interfacing techniques. Cache memory protocol and virtual memory concepts in Pentium processors. Vector and Array Processors with VLIW architecture.	Ref. 2,5,6	6*
	•	Total (* Not inc	luded)	42

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Implement various Arithmetic Operations through Assembly Language Programming
	for microprocessor 8086 (MASM)
2	Simulate the operation of COPY and PASTE in 8086 (MASM)
3	Implement various String Operations in 8086 through the utilities provided by DOS
	interrupts (MASM)
4	Generation of alphabetic arrangement of a given string in 8086 (MASM)
5	Design password application (generation and detection) in 8086 (MASM/C)
6	Design of Carry Look Ahead Adder
7	Implement Booth's Multiplication Algorithm
8	Implement Division Algorithm (Non-Restoring and Restoring)
9	Implement Mapping techniques of Cache memory
10	Implement Page Replacement Policies

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Organization	Fifth	Carl Hamacher, Zvonko	Tata	2002
			Vranesic, Safwat Zaky	McGraw-Hill	
2	Computer Organization and Architecture: Designing for Performance	Eighth	William Stallings	Pearson	2010
3	Computer System Architecture	Third	M, Morris Mano	Pearson	2007
4	Computer Architecture & Organization	Third	John P. Hayes	McGraw-Hill	1998

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sr. No	Title	Edition	Authors	Publisher	Year
1	Structured Computer Organization	Sixth	Andrew S. Tanenbaum	Pearson	2013
2	Microprocessor and Interfacing: Programming & Hardware	Third	Douglas V Hall	Tata- McGraw Hill	2012
3	Computer Architecture and Organization: Design Principles and Applications	Second	B. Govindarajulu	McGraw Hill	2017
4	Programmer's reference Manual for IBM Personal Computers	First	Steven Armburst	McGraw Hill	1986
5	Pentium Processor System Architecture	Second	Don Anderson, Tom Shanley, MindShare Inc, MindShare, Inc	Addison- Wesley Professional	1995
6	Modern Processor Design: Fundamentals of Superscalar Processors	Second	John Paul Shen , Mikko H. Lipasti	Waveland Press Inc.	2013

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teach	(Hrs/v	0	Credits Assigned								
Code		L	Т	Ρ	0	Е	L	Т	Р	Total			
(PC)	Database Management systems	3	0	2	5	10	3	0	1	4			
					Exami	nation	Schen	ne					
		Comp	onent		ISE		MSE	E	SE	Total			
CS204/IT204		The	eory		75		75	1	.50	300			
		Laboratory			50				50	100			

Pre-requi	isite Course Codes, if any						
Course Objective: To efficiently and effectively Design, develop, maintain and retrieve the							
Information from DBMS.							
Course Outcomes (CO): At the End of the course students will be able to							
XXXXX.1	Demonstrate understanding of given system to construct a database model.						
XXXXX.2	Apply various Relational and SQL commands on the populated database.						
XXXXX.3	Examine the functional dependencies to make a normalized database system.						
XXXXX.4	Examine transaction processing techniques on a database.						
XXXXX.5	Illustrate query processing and optimization method on a database.						

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												
XXXXX.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
XXXXX.1						
XXXXX.2						
XXXXX.3						
XXXXX.4						
XXXXX.5						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand Apply	Analyze	Evaluate	Create	
---------------------------	---------	----------	--------	--

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Module No.	Unit No.	Topics	Ref.	Hrs.						
1	Title	Introduction: Database Concepts and ER Modeling	1,2							
	1.1	Introduction to basic concept of Database, Characteristics of databases, File system V/s Database system, Users of Database system, Database Administrator, Data Independence, Codd's Rule, DBMS system architecture.	,	09						
	1.2	Introduction to ER model, Benefits of Data Modeling, Types of data Models, Phases of Database Modeling, The Entity- Relationship (ER) Model, Extended Entity-Relationship (EER) Model								
2	Title	Relational Algebra and SQL	1,2	16						
	2.1	Introduction, Mapping the ER and EER Model to the Relational Model, Relational Algebra: Overview, Basic Operators, Extended Operators								
	2.2	Overview of SQL, Data Definition Commands, Data Manipulation commands, Data Control commands, Set operations, aggregate function, null values, Views in SQL, Subquery, Trigger, stored procedure								
3	Title	1,2	06							
	3.1	Design guidelines for relational schema, Functional dependencies								
	3.2	Normal Forms- 1NF, 2 NF, 3NF, BCNF and 4NF,5NF								
4	Title	Transaction Processing and Recovery	1,2	07						
	4.1	Transaction concept, Transaction states, ACID properties, Implementation of atomicity and durability, Concurrent Executions, Serializability, Recoverability, Lock-based, Timestamp- based, Validation-based protocols.								
	4.2	Shadow paging, Deadlock handling.								
5	Title	Introduction to Query Processing and Query Optimization	1,2	04						
	5.1	Basics of Query Processing, Measures of Query Cost								
	5.2	Query Optimization: Equivalence Rules, Pictorial representations								
6	Self	1. Relational Calculus-Information retrieval	1,2	5*						
	Study	2. NO SQL-Data type, Database creation, Basic command for creation, updating and querying the database, Mongo dB								
		Total (*Not inc	Total (*Not included)							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component:

Assign a case study for group of 2/3 students and each group will perform following experiments on the case study.

Exp No.	Title of the Experiment							
1	Formulate a case study and create an E-R Diagram.							
Ŧ	Mapping of E-R model to Relational Model.							
	To create a database and populate using SQL commands (With constraints)							
	 Data Definition Language- Create, Alter, Drop, Rename, Truncate 							
2	 Data Manipulation Language- Insert, Update, Delete, Select 							
	Constraints-Not Null, Unique Key, Primary Key, Foreign Key, Check, Dropping							
	a Constraint.							
3	To perform DCL, TCL commands							
	 Data Control Language: Grant, Revoke, Roles 							
	 Transaction Control Language: Commit, Rollback, Save point 							
4	To perform Date, Time, Arithmetic and Set operation on database.							
5	To perform Aggregate function and Group by- Having clause on database							
6	To perform Join operations on database.							
0	Equijoins, Non-Equijoins, Self Joins, Outer Join, cross Join							
7	To retrieve a data using Subquery.							
8	To Create a different view of database.							
9	To examine integrity of database using Triggers.							
10	To improve performance of system using stored procedure.							

Textbooks

Sr. No	Title	Edition	Authors	Publisher	Year
1	Database System	Seventh	Korth, Slberchatz,	McGraw –	2019
Ţ	Concepts		Sudarshan	Hill	
2	Fundamentals of	Sixth	Elmasri and Navathe	PEARSON	2011
2	Database Systems			Education	

Sr. No	Title	Edition	Authors	Publisher	Year
1	Database Management Systems	Third	Raghu Ramkrishnan and Johannes Gehrke	тмн	2003
2	Database Management Systems	First	G. K. Gupta	McGraw – Hill.	2018
3	SQL, PL/SQL programming language of ORACLE	Forth	Ivan Bayross	BPB	2010

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Semester-IV

UG Syllabus 2020 iteration/CS/IT pg. 68

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teach	ing Scl	neme	(Hrs/v	veek)	C	Credits Assigned				
(Category) Code	Course Name	L	т	Ρ	о	E	L	т	Р	Total		
(BSC)	Linear Algebra	2	0	2	5	9	2	0	1	3		
			Examination Scheme									
		Comp	onent		ISE		MSE		SE	Total		
MA201		The	ory		50		50	1	L OO	200		
		Labor	atory		50				50	100		

Pre-requisi	ite Course Codes, if any.	Engineering Calculus/Foundation of Mathematics-I and						
-		Differential Equations and Complex Analysis/Foundation of						
		Mathematics-II						
Course Ob	jective: To develop mathem	atical skills for solving engineering problems.						
Course Outcomes (CO): At the End of the course students will be able to:								
MA201.1	Solve a homogeneous and	non-homogeneous system of linear equations using rank of						
	a matrix.							
MA201.2	Solve system of linear equations by Numerical Methods.							
MA201.3	Solve equations in real life problems and to encode and decode messages using the							
	concept of matrices.							
MA201.4	Identify whether given str	ructures are vector spaces and subspaces and construct a						
	basis for them.							
MA201.5	Show if a given matrix is dia	agonalisable or not.						
MA201.6	Apply concepts of eigenva	alues and eigenvectors to calculate functions of a square						
	matrix, google page rank	vector and solve systems of differential equations using						
	diagonalisation of matrices							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
	1											
MA201.1												
MA201.2												
MA201.3												
MA201.4												
MA201.5												
MA201.6												

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA201.1						
MA201.2						
MA201.3						
MA201.4						
MA201.5						
MA201.6						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand Apply Analyze Evaluate Create

Module	Unit	Topics	Ref	Hrs.
1	Title	Basics of matrices	3.5	03
-	intic		0,0	
	1.1	Revision of basic matrices and types of matrices.		01
	1.2	Row echelon form, Reduced Row Echelon form, Rank of a		02
		matrix.		
2	Title	Linear equations & its solutions	1,2,3,5	07
	2.1	Consistency and solution of simultaneous linear homogeneous		02
		and non-homogeneous equations.		
	2.2	Application of solving systems of equations in traffic control.		01
	2.3	Solution of system of linear algebraic equations, by		04
		(1) Gauss Elimination Method		
		(2) Gauss Jordan method		
		(3) Gauss Jacobi Iteration method		
		(4) Gauss Seidel Method.		
		(5) LU Decomposition -Crout's method		
3	Title	Vector spaces (over field of real numbers)	1,2,5	08
	3.1	Vector space, subspace, span, linear dependence and		08
		independence of vectors, basis, dimension, orthogonal		
		projection & gram-Schmidt process. Null space, row space,		
		column space, Rank-Nullity theorem (only statement). Least		
		square method.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

4	Title	Encoding & decoding using Matrices.	4	02
	4.1	Application of matrices to Coding and Decoding		02
5	Title	Eigenvalues and Eigenvectors	1,2,3,5	08
	5.1	Eigenvalues, Eigenvectors and its properties. Cayley Hamilton		04
		theorem and its applications. Diagonalisation of matrices.		
		Derogatory and Non-derogatory matrices.		
	5.2	Application to find google page rank. Functions of a square		04
		matrix. Solving system of differential equations using		
		diagonalisation.		
6	Self	1.2 Normal form.	1,2,3,5	05
	Study	2.2 Forming equations using KVL for circuits and solving them		
		using matrices.		
		3.1 Singular Value Decomposition.		
		5.1 Additional properties with proofs of eigenvalues and		
		eigenvectors.		
			Total	28*

*Total of 28 hours does not include the self-study hours.

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Introduction to Scilab (getting started) and its benefits to use as a mathematics tool.
2	Basic commands of Scilab and vectors & matrix operations.
3	Conditional branching and iterations using Scilab.
4	Solution of linear equations using row-echelon and inverse of a matrix.
5	Solutions of linear equations using Gauss Elimination method.
6	Solutions of linear equations using Gauss Jordan method.
7	Solutions of linear equations using Gauss-Jacobi method.
8	Solutions of linear equations using Gauss-Seidel method.
9	Solutions of linear equations using Crout's method.
10	To find Eigenvalues and Eigenvectors using Scilab

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Linear Algebra and its applications	Fourth	Gilbert Strang	Cengage	2014
2	Higher Engineering Mathematics	Forty Fourth	Dr. B. S. Grewal	Khanna Publications	2020

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sr. No	Title	Edition	Authors	Publisher	Year
1	Linear Algebra and its applications	Third	David. C. Lay	Pearson Education	2006
2	Elementary Linear Algebra Application Version	Sixth	H Anton and Crorres	John Wiley and Sons	2010
3	Advanced Engineering Mathematics	Twenty Eighth	H.K Das	S.Chand	2014
4	Hill Ciphers	First	Jonaki B Ghosh	At Right Angles	2015
5	Advanced Engineering Mathematics	Tenth	Erwin Kreysizg	John Wiley & Sons	2011

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course		Teaching Scheme (Hrs/week)					C	redits	S Assig	ned
(Category) Code	Course Name	L	т	Р	0	Ε	L	т	Ρ	Total
(BSC)	Foundations of Mathematics-II	2	1	0	0	3	2	1	0	3
		Examinatio					on Scheme			
		Comp	onent		ISE		MSE	E	SE	Total
		Theory		y 75			75	1	.50	300
IVIA204		Laboratory								

Pre-requisite	uisite Course Codes, if any. Foundations of Mathematics-I					
Course Objective: To develop basic foundation of mathematical skills.						
Course Outcomes (CO): At the End of the course students will be able to: -						
MA204.1	Integrate a function of one variable using various techniques					
MA204.2	Sketch basic curves and solve double and triple integrals.					
MA204.3	Solve basic problems using properties of complex numbers.					
MA204.4	Solve differential equation	ns of first order.				
MA204.5	Apply the techniques of so	olving first order differential equations to electrical				
	engineering problems.					
MA204.6	Solve differential equation	ns of higher order				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
MA204.1												
MA204.2												
MA204.3												
MA204.4												
MA204.5												
MA204.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
MA204.1						
MA204.2						
MA204.3						
MA204.4						
MA204.5						
MA204.6						

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

	Remember	Understand	Apply	Analyze	Evaluate	Create
--	----------	------------	-------	---------	----------	--------

Theory Component

Module	Unit	Topics	Def	Line
No.	No.	Topics	Rei	nrs.
1	Title	Integral Calculus		13
	1.1	Formulae for integral of standard functions, integration by parts,		04
		integration by method of substitution.		
	1.2 Gamma functions, Beta functions. Differentiation under Integral		1,2	04
		sign with constant limits and one parameter.		
	1.3	Standard curves (lines, circles, parabolas, ellipses). Concept of		05
		ble integration. Evaluation of double and triple integrals.		
2	Title	Complex Numbers		03
	2.1	Operations on complex numbers, polar form of a complex	1,2	03
	number, properties of a complex number.			
3	Title	Differential Equations		12
	3.1	Exact differential equations. Linear differential equations of the		04
		first order and equations reducible to linear.	4.2	
	3.2Solving differential equations of first order in electrical networks.1,23.3Linear differential equations with constant coefficients:1,2		1,2	01
				07
		complementary function and particular integral.		
		Total		28

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Higher Engineering Mathematics	Forty Fourth	Dr. B. S. Grewal	Khanna Publications	2020

Sr. No	Title	Edition	Authors	Publisher	Year
1	Advanced Engineering Mathematics	Tonth	Erwin	John Wiley &	2011
L		Tenth	Kreysizg	Sons	2011
2	Advanced Engineering Mathematics	Twenty Eighth	H.K.Dass	S.Chand	2014

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week) Credits Assigned									
Code		L	Т	Ρ	0	Е	L	Т	Р	Total	
	Design and Analysis	3	0	2	5	10	3	0	1	4	
(PC)					Exami	nation	Schem	Scheme			
		Comp	onent		ISE		MSE	E	SE	Total	
		The	ory		75		75	1	.50	300	
CS205/11205		Labor	atory		50				50	100	

Pre-requis	ite Course Codes, if any.	Advanced Data Structures
Course Ob	jective:	
Course Ou	tcomes (CO):At the End of th	e course students will be able to
XXXXX.1	Analyze time and space com	plexity of an algorithm.
XXXXX.2	Apply divide and conquer str	ategy to solve problems.
XXXXX.3	Apply the concept of dynamic	c programming and greedy approach to solve problems.
XXXXX.4	Apply the idea of backtracking	ng, branch and bound strategy to solve problems.
XXXXX.5	Apply various string matchin	g algorithms.

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												
XXXXX.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
XXXXX.1						
XXXXX.2						
XXXXX.3						
XXXXX.4						
XXXXX.5						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember Understand	Apply	Analyze	Evaluate	Create	
---------------------	-------	---------	----------	--------	--

UG Syllabus 2020 iteration/CS/IT pg. 75

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

No.No.Introduction to Analysis of algorithmIntroduction to Analysis of algorithm1TitleIntroduction to Analysis of algorithmIntroduction to Analysis of algorithmIntroduction to Analysis of algorithm1.1Standard Notation and Common Functions: Asymptotic Notation, Standard Notation and Common Functions: Asymptotic Notation, Indication sort.1,21.2Sort, Analysis of Quick sort, Analysis of Binary search, Finding the maximum and minimum, Strassen's matrix multiplication.1,21.3Recurrences: The substitution method, Recursion tree method, Master method and Proof.12.1Dynamic Programming: Assembly-line scheduling, Matrix Chain Multiplication, Longest common subsequence.12.2Amortized analysis- Aggregate analysis, accounting and Potential Method, Dynamic Table.13TitleGreedy Approach: Basic strategy, application to job sequencing algorithm.1,24TitleBacktracking: General method, 8 queen problem (N-queen problem, 15 puzzle problem.25TitleApproximation and String Matching algorithms algorithm.25.1TitleApproximation and String Matching algorithms fray algorithm.26String Matching algorithms: The naïve string matching Algorithms, the Kauth-Morris-Pratt algorithm.16NP-complete problem: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard grap and scheduling Problems. NP-completeness and reductioility, decision and optimization problems. NP-completeness and reduction1,26NP-complete problems: B	Module	Unit	Topics	Rof	Hrs
1 Title Introduction to Analysis of algorithm Image: Complexity, Growth of Functions: Asymptotic Notation, Standard Notation and Common Functions, Analysis of sorting algorithms Such as Selection sort and insertion sort. 1,2 1.1 Standard Notation and Common Functions, Analysis of Merge 1,2 1.2 Sort, Analysis of Quick sort, Analysis of Binary search, Finding the maximum and minimum, Strassen's matrix multiplication. 1,2 1.3 Recurrences: The substitution method, Recursion tree method, Master method and Proof. 1 2.1 Dynamic Programming: Assembly-line scheduling, Matrix Chain Multiplication, Longest common subsequence. 1 2.1 Montized analysis- Aggregate analysis, accounting and Potential Method, Dynamic Table. 1 3 Title Greedy Approach: Basic strategy, application to job sequencing with deadlines problem, Single source shortest path-Dijkstra's 1,2 5 3.1 Knapsack problem, Minimum cost spanning trees-Kruskal and prim's algorithm. 1,2 4 Title Backtracking and Branch-and-bound 1 4.1 Backtracking and Branch-and-bound 1 1,2 5.1 Approximation and String Matching algorithms 2 5 5.1 Approximation and String Matching algorithms 1 6 NP-com	No.	No.		Rel.	<u>п</u> з.
Role of Algorithms in Computing, Performance analysis-space and time complexity, Growth of Functions: Asymptotic Notation, Standard Notation and Common Functions: Asymptotic Notation, algorithms Such as Selection sort and insertion sort.1,212Divide and Conquer Approach – General Method, Analysis of Merge Sort, Analysis of Quick sort, Analysis of Binary search, Finding the maximum and minimum, Strassen's matrix multiplication.1,213Recurrences: The substitution method, Recursion tree method, Master method and Proof.12TitleDynamic Programming and Amortized Analysis Multiplication, Longest common subsequence.12.1Multiplication, Longest common subsequence.13TitleGreedy Approach: Basic strategy, application to job sequencing with deadlines problem, Single source shortest path-Dijkstra's algorithm.1,24TitleBacktracking: General method, 8 queen problem (N-queen problem, JS puzzle problem.25TitleApproximation algorithms: The vertex-cover problem, The traveling-salesman problem, String Matching algorithms, problem, 15 puzzle problem.25String Matching algorithms: The vertex-cover problem, The traveling-salesman problem, Serie string matching Algorithms, The Rabin Karp algorithm.16NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. BA-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,2	1	Title	Introduction to Analysis of algorithm		
Divide and Conquer Approach – General Method, Analysis of Merge 12 Sort, Analysis of Quick sort, Analysis of Binary search, Finding the maximum and minimum, Strassen's matrix multiplication. 1,2 I.3 Recurrences: The substitution method, Recursion tree method, Master method and Proof. 1 I.3 Pecurrences: The substitution method, Recursion tree method, Multiplication, Longest common subsequence. 1 I.1 Dynamic Programming: Assembly-line scheduling, Matrix Chain Multiplication, Longest common subsequence. 1 I.1 Mortized analysis - Aggregate analysis, accounting and Potential Method, Dynamic Table. 1 I.1 Greedy Approach: Basic strategy, application to job sequencing with deadlines problem, single source shortest path-Dijkstra's algorithm. 1,2 I.1 Backtracking: General method, 8 queen problem (N-queen problem, Sun of subsets, Graph coloring. 2 I.1 Backtracking: General method, 8 queen problem (N-queen problem, Sun of subsets, Graph coloring. 2 I.1 Backtracking: General method, 8 queen problem, Travelling salesman problem, Sun of subsets, Graph coloring. 2 I.1 Branch and Bound: 0/1 knapsack problem, Travelling salesman problem, The set covering problem 2 I.1 String Matching algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem 1		1.1	Role of Algorithms in Computing, Performance analysis-space and time complexity, Growth of Functions: Asymptotic Notation, Standard Notation and Common Functions, Analysis of sorting algorithms Such as Selection sort and insertion sort.	1,2	12
1.3Recurrences: The substitution method, Recursion tree method, Master method and Proof.12TitleDynamic Programming and Amortized Analysis12.1Dynamic Programming: Assembly-line scheduling, Matrix Chain Multiplication, Longest common subsequence.1122.2Amortized analysis- Aggregate analysis, accounting and Potential Method, Dynamic Table.1123TitleGreedy Approach113.1Method, Dynamic Table.11123.2Knapsack problem, Single source shortest path-Dijkstra's algorithm.1,253.2Knapsack problem, Minimum cost spanning trees-Kruskal and prim's algorithm.1,254TitleBacktracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.255TitleApproximation and String Matching algorithms255TitleApproximation and String Matching algorithms16NP-complete problem, String matching with finite automata, The Knuth-Morris-Pratt algorithm116NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, 		1.2	Divide and Conquer Approach – General Method, Analysis of Merge Sort, Analysis of Quick sort, Analysis of Binary search, Finding the maximum and minimum, Strassen's matrix multiplication.	1,2	12
2TitleDynamic Programming and Amortized Analysis12.1Dynamic Programming: Assembly-line scheduling, Matrix Chain Multiplication, Longest common subsequence.1122.2Amortized analysis- Aggregate analysis, accounting and Potential Method, Dynamic Table.113TitleGreedy Approach13.1Greedy Approach: Basic strategy, application to job sequencing with deadlines problem, single source shortest path-Dijkstra's algorithm.1,24TitleBacktracking and Branch-and-bound1,24TitleBacktracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.25TitleApproximation and String Matching algorithms problem, 15 puzzle problem.25TitleApproximation and String Matching algorithms 		1.3	Recurrences: The substitution method, Recursion tree method, Master method and Proof.	1	
2.1Dynamic Programming: Assembly-line scheduling, Matrix Chain Multiplication, Longest common subsequence.1122.2Amortized analysis- Aggregate analysis, accounting and Potential Method, Dynamic Table.113TitleGreedy Approach13.1Greedy Approach: Basic strategy, application to job sequencing with deadlines problem, single source shortest path-Dijkstra's algorithm.1,24TitleBacktracking and Branch-and-bound14TitleBacktracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.25TitleApproximation and String Matching algorithms problem, 15 puzzle problem.25TitleApproximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem16NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,2	2	Title	Dynamic Programming and Amortized Analysis		
2.2Amortized analysis- Aggregate analysis, accounting and Potential Method, Dynamic Table.13TitleGreedy Approach		2.1	Dynamic Programming: Assembly-line scheduling, Matrix Chain Multiplication, Longest common subsequence.	1	12
3TitleGreedy Approach3.1Greedy Approach: Basic strategy, application to job sequencing with deadlines problem, single source shortest path-Dijkstra's algorithm.1,23.2Knapsack problem, Minimum cost spanning trees-Kruskal and prim's algorithm.1,24TitleBacktracking and Branch-and-bound1,24.1Backtracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.25.2Branch and Bound: 0/1 knapsack problem, Travelling salesman problem, 15 puzzle problem.25TitleApproximation and String Matching algorithms16Self StudyString Matching algorithm. String matching with finite automata, algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,2		2.2	Amortized analysis- Aggregate analysis, accounting and Potential Method, Dynamic Table.	1	
3.1Greedy Approach: Basic strategy, application to job sequencing with deadlines problem, single source shortest path-Dijkstra's algorithm.1,253.2Knapsack problem, Minimum cost spanning trees-Kruskal and prim's algorithm.1,21,24TitleBacktracking and Branch-and-bound1,24.1Backtracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.254.2Branch and Bound: 0/1 knapsack problem, Travelling salesman problem, 15 puzzle problem.255TitleApproximation and String Matching algorithms15.1Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem16NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,2	3	Title	Greedy Approach		
3.2Knapsack problem, Minimum cost spanning trees-Kruskal and prim's algorithm.1,24TitleBacktracking and Branch-and-bound1,24.1Backtracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.254.2Branch and Bound: 0/1 knapsack problem, Travelling salesman problem, 15 puzzle problem.255TitleApproximation and String Matching algorithms15.1Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem16String Matching algorithms: The naïve string matching Algorithms, The Rabin Karp algorithm16NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,2		3.1	Greedy Approach: Basic strategy, application to job sequencing with deadlines problem, single source shortest path-Dijkstra's algorithm.	1,2	5
4TitleBacktracking and Branch-and-bound		3.2	Knapsack problem, Minimum cost spanning trees-Kruskal and prim's algorithm.	1,2	
4.1Backtracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.254.2Branch and Bound: 0/1 knapsack problem, Travelling salesman problem, 15 puzzle problem.255TitleApproximation and String Matching algorithms25StrileApproximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem16Self StudyNP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,25*	4	Title	Backtracking and Branch-and-bound		
4.2Branch and Bound: 0/1 knapsack problem, Travelling salesman problem, 15 puzzle problem.25TitleApproximation and String Matching algorithms75.1Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem15.2String Matching algorithms: The naïve string matching Algorithms, The Rabin Karp algorithm, String matching with finite automata, The Knuth-Morris-Pratt algorithm16NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, 		4.1	Backtracking: General method, 8 queen problem (N-queen problem), Sum of subsets, Graph coloring.	2	5
5TitleApproximation and String Matching algorithms15.1Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem15.1String Matching algorithms: The naïve string matching Algorithms, The Rabin Karp algorithm, String matching with finite automata, The Knuth-Morris-Pratt algorithm16NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,2		4.2	Branch and Bound: 0/1 knapsack problem, Travelling salesman problem, 15 puzzle problem.	2	
5.1Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem15.2String Matching algorithms: The naïve string matching Algorithms, The Rabin Karp algorithm, String matching with finite automata, The Knuth-Morris-Pratt algorithm16NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,2	5	Title	Approximation and String Matching algorithms		
String Matching algorithms: The naïve string matching Algorithms, The Rabin Karp algorithm, String matching with finite automata, The Knuth-Morris-Pratt algorithm16NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,2		5.1	Approximation algorithms: The vertex-cover problem, The traveling-salesman problem, The set covering problem	1	8
6NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction1,25*	5.2		String Matching algorithms: The naïve string matching Algorithms, The Rabin Karp algorithm, String matching with finite automata, The Knuth-Morris-Pratt algorithm	1	0
Total 10	6	Self Study	NP-complete problems: Basic concepts, Non-deterministic Algorithms, NP-hard and NP-complete, Cook's Theorem, NP-Hard graph and scheduling Problems. NP-completeness and reducibility, decision and optimization problems, polynomial reduction	1,2	5*

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Experiment on finding the running time of an algorithm.
2	Experiment based on divide and conquers approach.
3	Experiment on Recurrence relation.
4	Experiment using dynamic programming approach
5	Experiment based on greedy approach
6	Experiment based on graph Algorithms
7	Experiment using Backtracking strategy
8	Experiment using branch and bound strategy
9	Experiment based on Approximation Algorithms
10	Experiment on string matching algorithms.

Text Book(s):

Sr. No	Title	Edition	Authors	Publisher	Year
1	Introduction to Algorithms	Third	Thomas H. Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein	MIT Press	2009
2	Fundamentals of Computer Algorithms	Second	Horowitz E, Sahni S and S. Rajasekaran	Galgotia Publications	2010

Sr. No	Title	Edition	Authors	Publisher	Year
1	The Design and analysis of algorithms	First	Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman	Pearson Education India	2006

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Р	0	Ε	L	Т	Р	Total
	Operating Systems	3	0	2	5	10	3	0	1	4
(PC)		Examination Scheme								
		Component			ISE		MSE	E	SE	Total
CS206/IT206		Theory			75		75		.50	300
		Laboratory			50		50		100	

Pre-requisite	e Course Codes, if any.	Computer Architecture and Organization							
Course Obje	ctive:								
Course Outcomes (CO): At the End of the course students will be able to									
XXXXX.1	Comprehend the primiti	ve concepts of Operating System services and System							
	Programming functionalit	Programming functionality.							
XXXXX.2	Articulate process scheduling algorithms in effective execution of processes.								
XXXXX.3	Acquaint with efficient pr	ocess synchronization techniques in effective execution of							
	programs.								
XXXXX.4	Analyze virtual memory	management algorithms in effective allocation of main							
	memory usage.								
XXXXX.5 Evaluates various algorithms of File Storage & I/O management for performance ar									
	quality criterion.								

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												
XXXXX.5												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2	PSO3
XXXXX.1							
XXXXX.2							
XXXXX.3							
XXXXX.4							
XXXXX.5							

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Remember	Understand	Apply	Analyze	Evaluate	Create
----------	------------	-------	---------	----------	--------

Module	Unit	Topics	Ref.	Hrs.			
INO.	Titlo	Introduction to System Software and Operating Systems					
1	1.1System Software – Introduction, Goal, Systems Programs and Systems Programming, Views of Systems Software. Linkers and Loader – Relocation and Linking Concepts, Design of Linker, Self-Relocating Programs, Linking of Overlay Structured Programs, Dynamic Linking, Loaders.						
	1.2	Operating Systems – Introduction, Structure and Principles of Operations of Operating Systems, Classes of Operating Systems, Batch Processing Systems, Multiprogramming Systems, Time Sharing Systems, Real Time Operating Systems.	1				
	Title Process Management 2.1 Processes and Threads – Process Concept Process Scheduling						
2	2.1	Processes and Threads – Process Concept, Process Scheduling, Operations on Processes, Multicore Programming, Multithreading Models, Thread Libraries, Implicit Threading, Threading Issues, Operating-System Examples	2	8			
	2.2	UNIX Process and Threads – Process Abstraction, Process Creation using fork and exec, invoking new process, process termination, awaiting process termination, User and Kernel Threads.	3				
	Title	Process Coordination					
	3.1	Process Synchronization - Critical-Section Problem, Peterson's Solution, Synchronization Hardware, Mutex Locks, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization Examples	2				
3	3.2	 CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Real-Time CPU Scheduling, Operating-System Examples. Deadlock - Characterization, Methods for Handling Deadlocks, Detection, Prevention, Avoidance, Recovery methods for Deadlock. 	2	12			
	3.3	UNIX IPC – Universal IPC Facilities, System V IPC, Message, Ports, Message Passing, Port Operations	3				
	Title	Memory management					
	4.1	Memory Management Strategies - Swanning Contiguous					
4		Memory Allocation, Segmentation, Paging, Structure of the Page Table.	2	6			
	4.2	Virtual Memory Management - Demand Paging, Allocation of	2				

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Frames, Thrashing, Memory-Mapped Files, Allocating Kernel							
		Memory, Operating-System Examples.							
	Title	File Management							
	5.1	Storage Management - Disk Structure, Disk Scheduling, Disk	2						
		Management							
	5.2	File-System Implementation - File-System Structure, File-System							
5	Implementation, Directory Implementation, Allocation Methods,								
	Free-Space Management								
	5.3	UNIX Internal File Representation - Inodes, Structure of Regular							
		File, Directories, Path Name to Inode Conversion, Super Block,	4						
		Inode Assignment, Allocation of Disk blocks, Other File Types.	4						
		1) Explore Features, characteristics and CPU scheduling of							
	Solf	Real-Time Operating System along an example							
6	Study	2) Explore the requirements of Kernel, CPU Scheduling, Disk	2,4	5*					
	Sludy	Scheduling for Multimedia Systems							
		Explore all UNIX System Calls for File System.							
	Total (*Not included)								

List of Experiments for Operating System Laboratory

Sr. No	Title of the Experiment
1	Installation of Linux OS on Virtual Machine.
2	Write a program for creating a static/dynamic link library for complex number operations and then test this library through linuxld linker.
3	Write a program which creates exactly 16 copies of itself by calling fork() only twice within a loop. The program should also print a tree of the pids.
4	Write a program to simulate the following non-preemptive CPU scheduling algorithms to find turnaround time and waiting time. a) FCFS b) SJF c) Round Robin d) Priority
5	The program r.c initializes <i>n</i> number of semaphores. It first assign count equal -1, which is then used by process p and q. This count is protected by semaphore. It also allocates shared memory of size 40 ints. It waits for process p and q to enter all n1 and n2 elements through different terminals. This program r.c sorts shared data in ascending order. It waits to finish p and q. At end, The program r.c detaches and deletes <i>n</i> semaphores and print the sorted list.
6	Write a multithreaded program for preventing race conditions and deadlock avoidance for the banker's algorithm as follows. Several customers' request and release resources from the bank. The banker will grant a request only if it leaves the system in a safe state. A request that leaves the system in an unsafe state will be denied.
7	Write a program which acts as a chat application between two users on the same computer using shared memory.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

8	Assume that a system has a 32-bit virtual address with a 4-KB page size. Write a C program that is passed a virtual address (in decimal) on the command line and have it output the page number and offset for the given address. As an example, your program would run as follows: ./a.out 19986 Your program would output: The address 19986 contains: page number = 4 offset = 3602 Writing this program will require using the appropriate data type to store 32 bits. We encourage you to use unsigned data types as well.
9	Write a program to simulate disk scheduling algorithms a) FCFS b) SCAN c) C-SCAN
10	Write a program to prevent destructive update of files by locking as follows: Suppose the inode contains a new permission setting such that it allows only one process at a time to open the file for writing, but many processes can open the file for reading.

Note – Implement all programs in C language under Linux OS environment

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	System Programming	First	D M Dhamdhere	Tata McGraw- Hill Education	2011
2	Operating System Concepts	Ninth	Abraham Silberschatz, Peter B Galvin, Greg Gagne	Wiley	2012
3	UNIX Internals: The New Frontiers	First	UreshVahalia	Prentice Hall	1995
4	Design of the UNIX Operating Systems	First	Maurice J. Bach	Prentice-Hall	1990

Sr. No	Title	Edition	Authors	Publisher	Year
1	Operating Systems: Internals and Design Principles	Eighth	William Stallings	Pearson	2014
2	Modern Operating Systems	Fourth	Andrew S. Tanenbaum, Herbert Bos	Pearson	2014

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned			
Code		L	Т	Ρ	0	Ε	L	Т	Р	Total
	Computer Communications and	3	0	2	5	10	3	0	1	4
(PC)		Examination Scheme								
		Component			ISE		MSE		SE	Total
CS207/IT207	Networks	Theory			50		50		00	200
		Laboratory			50				50	100

Pre-requis	site Course Codes, if any.				
Course Ob	Course Objective: Understand the state-of-the-art in network protocols, architectures and				
applicatio	applications.				
Course Ou	Course Outcomes (CO): At the End of the course students will be able to				
XXXXX.1	Describe the fundamental concepts of Data Communication.				
XXXXX.2	Distinguish the different layers of the OSI model and TCP/IP.				
XXXXX.3	Identify the different types of protocols and their functions within a network.				
XXXXX.4	Apply the knowledge of subnetting, routing mechanisms and Software Defined				

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	P07	P08	PO9	PO10	PO11	PO12
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
XXXXX.1						
XXXXX.2						
XXXXX.3						
XXXXX.4						

BLOOM'S Levels Targeted (Pl. Tick appropriate)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Remember	Understand	Apply	Analyze	Evaluate	Create

Module	Unit	Topics	Ref.	Hrs.
1NO.	NO. Title	Computer Communication and The Internet		10
-	THE		1,2	10
	1.1	Internet: A Nut and Bolts Description, A Services Description,		
		Protocol. The Network Edge: Access Network, The Network Core:	1,2	
		Packet Switching, Circuit Switching, A Network of Networks		
	1.2	Delay, Loss, Inroughput in Packet Switched Networks: Overview	1 2	
		of Delay in Packet Switched Networks, Queuing Delay and Packet	1,2	
	13	Protocol Lavers and their Service Models: Lavered Architecture		
	1.5	and their Encapsulation.	1,2	
	1.4	Data and Signals: Analog and Digital. Periodic analog signals.		
		Digital signals, Transmission impairment.	2	
	1.5	Digital Transmission: Digital-to-Digital conversion, Analog-to-		
		Digital conversion. Transmission modes, Analog Transmission:	2	
		Digital-to-Analog conversion, Analog-to-Analog conversion.		
2	Title	Application Layer	1,2	6
	2.1	Principles of Network Applications: Network Applications		
		Architecture, Processes Communicating, Transport Services	12	
		Available to Applications, Transport Services Provided by the	1,2	
		Internet, Application Layer Protocols.		
	2.2	The Web and HTTP: Overview of HTTP, Non Persistent and	1 2	
		Persistent Connections, HITP Message Format, User Server	1,2	
	22	File Transfor Etc: Etc. Commands and Poplies ETP SMTP Mail		
	2.5	Access Protocol (IMAP POP) DNS	1,2	
3	Title	Transport Laver	1.2	8
	3.1	Introduction and Transport-Layer Services: Relationship Between	_,_	_
		Transport and Network Layers, Overview of the Transport Layer	1,2	
		in the Internet	·	
	3.2	Multiplexing and Demultiplexing	1,2	
	3.3	Connectionless Transport - UDP: UDP Segment Structure, UDP	1 2	
		Checksum	1,2	
	3.4	Principles of Reliable Data Transfer: Building a Reliable Data		
		Transfer Protocol, Pipelined Reliable Data Transfer Protocols, Go-	1,2	
	• -	Back-N (GBN), Selective Repeat (SR),		
	3.5	Connection-Oriented Transport - TCP: The TCP Connection, TCP	1,2	
		Segment Structure, Round-Trip Time Estimation and Timeout,	,	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

		Reliable Data Transfer, Flow Control, TCP Connection Management		
	3.6	Principles of Congestion Control: The Causes and the Costs of Congestion, Approaches to Congestion Control.	1,2	
4	Title	The Network Layer	1,2	10
	4.1	Introduction: Forwarding and Routing, Network Service Models.	1,2	
	4.2	Virtual Circuit and Datagram Networks: Virtual-Circuit Networks, Datagram Networks, Origins of VC and Datagram Networks.	1,2	
	4.3	Router: Input Processing, Switching, Output Processing, Queuing, The Routing Control Plane.	1,2	
	4.4	The Internet Protocol (IP): Forwarding and Addressing in the Internet, Datagram Format, IPv4 Addressing, Internet Control Message Protocol (ICMP), IPv6	1,2	
	4.5	Routing Algorithms: The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing	1,2	
	4.6	Software Defined Networking: Introduction and Overview	R3	
5	Title	The Link Layer: Links, Access Networks, and LANs	1,2	8
	5.1	Introduction to the Link Layer: The Services Provided by the Link Layer, Implementation of the Link Layer	1,2	
	5.2	Error-Detection and Correction Techniques: Parity Checks, Checksumming Methods, Cyclic Redundancy Check (CRC)	1,2	
	5.3	Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols, Taking-Turns Protocols.	1,2	
6*	Title	Self Study Topic	1,2	5*
	6.1	Transmission Media: Guided media, Unguided media: Wireless	1,2	
	6.2	ARP and RARP usage	1,2	
	6.3	Multicast routing and Broadcast routing	1,2	
	6.4	Routing in the Internet: Intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP	1,2	
	6.5	Network Function Virtualization	R3	
		Total		42

*This module hrs. not included in Total 42 hrs

Laboratory Component (Minimum 10 Laboratory experiments are expected)

Sr. No	Title of the Experiment
1	Use and interpret basic Networking Utilities
2	Describe various Network Topology and Networking Hardware
3	Experiment with Packet Tracers/Analyzers
4	Implement Web server and DHCP server for given scenario

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

5	Implement TELNET and FTP server for given scenario
6	Implement SMTP server for given scenario
7	Implement DNS server for given scenario
8	Develop client-server model using Socket Programming for given scenario
9	Illustrate basic Mininet operations for Software Defined Networking
10	Implement in Mininet to control switch manually

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Networking: Top Down Approach	Sixth	James Kurose and Kieth Ross	Pearson	2013
2	Data Communication and Networking	Second	Behrouz Forouzan	McGraw Hill	2000

Sr. No	Title	Edition	Authors	Publisher	Year
1	Computer Networks	Fifth	Andrew Tanenbaum	Pearson	2013
2	Computer Networks	Third	Larry L. Peterson and Bruce Davie	Morgon Huffman	2003
3	SDN and NFV Simplified	First	Jim Doherty	Addison Wesley	2016

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)				Credits Assigned				
Code		L	Т	Р	0	E	L	Т	Р	Total
(SBC)	Professional Communication Skills	1	0	2	2	5	1	0	1	2
(366)		Examination Scheme								
		Comp	Component ISE			MSE	E	SE	Total	
AS201		Theory								
		Laboratory			200					200

Pre-requisite Course Codes, if any.				
Course Objective:				
Course Outcomes (CO): At the End of the course students will be able to				
AS201.1	Demonstrate the spoken and written skills for job placements.			
AS201.2	Draft professional documents.			
AS201.3	Design written communication for social media.			

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
AS201.1												
AS201.2												
AS201.3												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
AS201.1						
AS201.2						
AS201.3						

BLOOM'S Levels Targeted (Pl. appropriate)

Remember Understand Apply Analyze Evaluate Create												
	Remember	Understand	Apply	Analyze	Evaluate	Create						

Module No.	Unit No.	Topics	Ref.	L Hrs.	P Hrs
1.	Title	Placement Skills		6	12
	1.1	Resume Writing & Cover Letter			
	1.2	Group Discussion			
	1.3	Case Studies/Pitching a startup			

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

	1.4	Team Building Skills/Work					
	1.5	Interview Skills					
2	Title	Corporate Communication		6	12		
	2.1	Presentation Skills					
	2.2	Meeting: Notice, Agenda, Minutes					
	2.3 Proposal Writing						
	2.4	Report Writing: Informative, Analytical report					
3	Title	Research Writing		2	4		
	3.1	Sourcing information through digital media					
	3.2	Written communication using social media: Blog					
4	Self	Research Paper, News Analysis			6*		
	Study						
	Total						

*Not included in the total

List of ISEs

Sr. No	Title of the Experiment
1	Resume
2	Cover Letter
3	GD
4	Mock Interview
5	Presentation
6	Blog Writing
7	Team Building Activity
8	Minutes of the Meeting/Notice & Agenda
9	Proposal Writing
10	Report Writing

Text Books

Sr. No	Title	Edition	Authors	Publisher	Year
1	Interpersonal Skills at Work	2002	John Hayes	McGraw Hill	2002
				Education	
2	Campus Placement: A	2016	Ankur Malhotra	McGraw Hill	2016
	Comprehensive Guide			Education	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Sr. No	Title	Edition	Authors	Publisher	Year
1	If I Understood You, Would I Have This Look on My Face? My Adventures in the Art and Science of Relating and Communicating	FIRST	Alan Alda	Random House	2017
2	Handbook for Writing Proposals	SECOND	Robert J. Hamper, Sue Baugh	McGraw Hill Education	2010
3	Effective Communication Skills for Scientific and Technical Professionals	2000	Harry Chambers	Paperback Basic Books	2000
4	The Art Of Writing Together	2008	William Issac	Crown Business	2008
5	Communication Skills	2011	Meenakshi Raman, Sangeeta Sharma	Oxford, India	2011

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

Course (Category)	Course Name	Teaching Scheme (Hrs/week)					Credits Assigned				
Code		L	Т	Р	0	Ε	L	Т	Р	0	Total
		0	0	0	4	4	0	0	0	2	2
(SBC)		Examination Scheme									
	Mini Project-I	Con	npone	ent	19	SE	N	ISE	E	SE	Total
CC200/IT200		Т	heory	/	-				-	-	
C3208/11208		Lab	orato	ory	1	00			10	00	200

Pre-requi	isite Course Codes, if any.							
Course O	Course Objective:							
Course Outcomes (CO): At the End of the course students will be able to								
XXXXX.1	Discover potential research areas for addressing societal issues							
XXXXX.2	Conduct a survey of basic and contemporary literature in the preferred field of study.							
XXXXX.3	Formulate and propose a plan for creating a solution for the research plan identified.							
XXXXX.4	Exercise the team building, communication and management for design and							
	implementation of projects.							
XXXXX.5	Compare and contrast the several existing solutions for research challenge							
XXXXX.6	Report and present the findings of the study conducted in the preferred domain.							

CO-PO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
XXXXX.1												
XXXXX.2												
XXXXX.3												
XXXXX.4												
XXXXX.5												
XXXXX.6												

CO-PEO/PSO Correlation Matrix (3-Strong, 2-Moderate, 1-Weak Correlation)

	PEO1	PEO2	PEO3	PEO4	PSO1	PSO2
XXXXX.1						
XXXXX.2						
XXXXX.3						
XXXXX.4						
XXXXX.5						
XXXXX.6						

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

BLOOM'S Levels Targeted (Pl. appropriate)

	Remember	Understand	Apply	Analyze	Evaluate	Create
--	----------	------------	-------	---------	----------	--------

Mini-project is an opportunity to make a difference in the experience of education in its own way. It is an attempt of scientific study of the problem in surrounding in order to guide, correct and evaluate the actions and decisions about it. It is based on a small project correlating scientific knowledge and day to day experience which encourages development of scientific attitude to solve real life problems among students.

The Objectives of Action Research are:

- ✓ To make students sensitive towards societal issues
- ✓ To learn scientific principles from day-to-day experiences
- ✓ To develop psycho-technological skills through observation, classification, statement of hypothesis etc.
- Development of communication, organizational skills and maturity through discussion, presentation etc.
- ✓ To develop ability to correlate science, technology and society
- ✓ To apply engineering knowledge and propose innovative, sustainable solutions to the real-life challenges

Steps for Implementation (ISE: 2 Phases) and ESE

- ✓ Keen observation of the surrounding/society
- ✓ Identification of the problem
- ✓ Analysis of the problem
- \checkmark Collection of relevant information by formulating research questions
- ✓ Suggesting plan of action
- ✓ Conducting experiments
- ✓ To draw conclusion
- ✓ To find the possible solution to rectify the problem
- ✓ To execute experiments and remedial measures wherever possible

Students can seek guidance from teachers, other experts and make effective use of other sources of information available around them. Students must ensure that problem to be solved in manageable in one semester.

Criteria of a good project:

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai)

- ✓ Appropriate idea, clear understanding, and proper presentation of the concept
- ✓ Quality of work
- ✓ Project plan and its execution
- Credibility of the work
- \checkmark Probable impact of the work on the attitude of students and society
- ✓ Scientific attitude, creativity and novelty reflected in project work and analysis of the situation
- ✓ Utility and innovation of the remedial measures
- ✓ Desirability, Feasibility and Viability in real life

The H/W and S/W resources required to complete the Mini-Project-I may be beyond the scope of curriculum of courses taken or may be based on the courses but thrust should be on

- Learning additional skills
- Development of ability to define and design the problem and lead to its accomplishment with proper planning
- Learn the behavioral discipline by working in a team. The team may be maximum three (03) students.

Evaluation:

Project report should contain project title, student details, certificate and acknowledgements. Other sections of the report shall be decided by the department based on projects. But it must have introduction, necessity of project, objectives, hypothesis, plan, observations, analysis of results, conclusion and references along with other sections related to technology. The ISE and ESE evaluation will be carried out based on the rubrics framed by the Department. The ESE marks will be based on final demonstration of the project and viva based on it and report/poster/technical paper of the project in the standard format provided by the Department.