Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

(Autonomous Institute Affiliated to University of Mumbai)

Revision: SPIT-2-18

<u>Bachelor of Technology (B.Tech)</u> <u>in</u> <u>Computer Engineering</u> (Program Code: UCE)

<u>Second Year Engineering</u> (Sem. III and Sem. IV) Effective from Academic Year 2018 -19

Board of Studies Approval: 14/12/2017

Academic Council Approval: 20/01/2018

Dr. D. R. Kalbande Head of Department Dr. Surendra Rathod Dean Academics Dr. Prachi Gharpure Principal

Sardar Patel Institute of Technology Bhavans Andheri Campus Munshi Nagar, Andheri (West), Mumbai - 400 058.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	SEM III								
Course Code	Course Name		Teachi	Credit					
		р	,	s/weel	<i>,</i>	S			
			L	Τ	P	Total			
BS31	Applied Mathematics I*	BS	3	1	-	4			
CE31	Advanced Data Structures*	PC	3	-	-	3			
CE32	Digital Logic Design and Analysis*	PC	3	-	-	3			
CE33	Discrete Structures and Graph Theory	PC	3	2	-	4			
CE34	Object Oriented Programming*	PC	3	-		3			
CEL35	Linux Lab	PC	-	-	2	1			
CEL31	Advanced Data Structures Lab	PC	-	-	2	1			
CEL32	Digital Logic Design and Analysis Lab	PC	-	-	2	1			
CEL34	Object Oriented Programming Lab	PC	-	-	2	1			
BS32	Human Health Systems Approach	BS	2	-	-	2			
SDX	SCOPE courses(Optional)	SD							
ABL1	Building Automation, Fire Safety and	ABL							
	Electronic Security (Noncredit)								
CEP1	Introduction to CEP (Optional)	CEP							
BC	Fundamentals of Mathematics (Noncredit)	BC	2\$						
-	(only for direct second year students)	-							
	Total		17	3	08	23			

* Common to Computer and Information Technology Department

\$: Lateral entry students only/ **only for direct second year students** (Since it is non-credit course it will not be counted in total marks)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	SEM IV								
Course Code	Course Name	Group		Teaching Scheme (Hrs/week)					
			L	, ,					
BS41	Applied Mathematics II *	BS	3	1	-	4			
CE41	Design and Analysis of Algorithms*	PC	3	-	-	3			
CE42	Database Management Systems*	PC	3	-	-	3			
CE43	Operating Systems*	PC	3	-	_	3			
CE44	Computer Organization and Architecture*	PC	3	-	-	3			
CEL41	Design and Analysis of Algorithms Lab	PC	-	-	2	1			
CEL42	Database Management Systems Lab	PC	-	-	2	1			
CEL43	Operating Systems Lab	PC	-	-	2	1			
CEL44	Computer Organization and Architecture Lab	PC	-	-	2	1			
CEL45	Web Technology Lab	PC	-	-	2	1			
LA^	Liberal Arts (Non credit) LA1: Yoga Vidya LA2: Music Appreciation LA3: Dramatics	LA	1						
SDX	SCOPE courses (Optional)	SD							
ABL2	Occupational Safety and Legal Studies for Engineers (Noncredit)	ABL							
CEP2	Problem solving module-I (Optional)	CEP							
	Total		16	1	10	21			

* Common to Computer and Information Technology Department

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Evaluation Scheme	9
--------------------------	---

Course Course Name Marks							
Code		ISE	MSE	ESE	Tota		
BS31	Applied Mathematics I*	20	20	60	100		
CE31	Advanced Data Structures*	20	20	60	100		
CE32	Digital Logic Design and Analysis*	20	20	60	100		
CE33	Discrete Structures and Graph Theory	20	20	60	100		
CE34	Object Oriented Programming*	20	20	60	100		
CEL35	Linux Lab	40			40		
CEL31	Advanced Data Structures Lab	40		20	60		
CEL32	Digital Logic Design and Analysis Lab	40			40		
CEL34	Object Oriented Programming Lab	40		20	60		
BS32	Human Health Systems Approach	ISE1= 20	ISE2= 20	Attendance= 10	50		
ABL1	Building Automation, Fire Safety and Electronic Security (Noncredit)						
BC	Fundamentals of Mathematics(Noncredit)	ISE1=	ISE2=	Attendance=	50&		
-	(only for direct second year students)	20	20	10			
	Total				750		
	B.Tech Computer Engineerin	g (SEM IV	7)				
Course	Course Name	Marks					
Code		ISE	MSE	ESE	Tota		
BS41	Applied Mathematics II *	20	20	60	100		
CE41	Design and Analysis of Algorithms*	20	20	60	100		
CE42	Database Management Systems*	20	20	60	100		
CE43	Operating Systems*	20	20	60	100		
CE44	Computer Organization and Architecture*	20	20	60	100		
CEL41	Design and Analysis of Algorithms Lab	40		20	60		
CEL42	Database Management Systems Lab	40			40		
CEL43	Operating Systems Lab	40			40		
CEL44	Computer Organization and Architecture Lab	40			40		
	Web Technology Lab	40			40		
CEL45		ISE1=	ISE2=	Attendance=	50		
CEL45 LA^	Liberal Arts(Noncredit) LA1: Yoga Vidya LA2: Music Appreciation	13E1= 20	20	10			
	LA1: Yoga Vidya						

* Common to Computer and Information Technology Department

\$: Lateral entry students only/ **only for direct second year students** (Since it is non-credit course it will not be counted in total marks)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Semester III

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
	Applied Mathematics-I	3	1		3	1		4
DC21		Examination Scheme						
BS31		ISE		MSE	ESE		1	Total
		20		20	60		100	

Course Objectives:

• To familiarize learners with mathematical tools and methods to solve engineering problems.

Course Outcomes:

	Junes.						
Pre-requisite	e cours	codes BS11 (Engineering Mathematics I)					
		BS21 (Engineering Mathematics II)					
After success	ful com	pletion of the course, student will be able to					
	CO1	Check analyticity of function of complex variables					
	CO2	Find Laplace and Inverse Laplace Transforms					
Course	CO3	Apply Laplace and Laplace Inverse methods to solve differential equations with initial conditions					
Outcomes	CO4	Expand functions in terms of sine and cosine series on the given interval					
	CO5	Evaluate Z-transform and Inverse Z-transform					
	CO6	Formulate and solve Linear Programming Problem arising in engineering					

Modul e No.	Module name	Uni t No.	Topics	Ref	Hrs ·
Compley		1.1	Analytic functions, Cauchy Riemann equations in Cartesian coordinates and Polar coordinates.		03
1	Variables	Complex VariablesHarmonic functions, Analytic method and Milne Thomson methods to find f(z), Orthogonal trajectories.	1,2	04	
		2.1	Definition of Laplace transform, Laplace transform of constant, trigonometric, exponential functions.		02
2	Laplace & Inverse Laplace Transform	2.2	Properties of Laplace transform: First shifting theorem, Laplace transform of $L\{t^nf(t)\}, L\{f(t)/t\}, L\{\frac{d^n}{dt^n}f(t)\}, L\{\int_0^t f(u) du\}, L\{f(a t)\}$ without proof.	2,4	04
		2.3	Inverse Laplace transform with Partial fraction and Convolution theorem (without proof).		04
		2.4	Application to solving Differential Equations with		02

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	1				-
			given initial conditions.		
3			Introduction to Fourier Series, Dirichlet's		
		3.1	conditions of convergences, Fourier series of		04
			periodic functions with period 2π and 2L.		
	Fourier	3.2	1,2, 3	02	
5	series	3.3	Half range sine and cosine Fourier series,	3	02
		5.5	Parsevel's identities (without proof).		02
		3.4	Orthogonal and Orthonormal functions, Complex		02
		5.4	form of Fourier series.		02
	Z transform	4.1	Z-transform of standard functions such as Z(a ⁿ),		01
		4.1	Z(cosak), Z(sin ak), etc.		01
		Properties of Z-transform :Linearity, Change of			
4			scale, Shifting property, Multiplication of K,	1,2	
4		4.2	Initial	1,2	02
			and final value, Convolution theorem (all without		
		proof).			
		4.3	Inverse Z transform: Method of Partial fraction.		02
			Introduction to Linear Programming problems and		
	Mathematic	5.1	its formulation. Graphical method to solve LPP in		03
5	al		two variables, Simplex method to solve LPP	2,3, 5	
5	Programmin	5.2	Artificial variables, Big –M method (method of	5	03
	g	5.2	penalty). Revised and two phase simplex methods.		03
		5.3	Duality, Dual simplex method.		02
				Total	42
				TOTAL	hrs

NOTE: ISE component will be evaluated through assignments conducted in the tutorial sessions (tutorials will be conducted class –wise)

- [1] Kreyszig, "Advanced Engineering Mathematics", 9thedition, John Wiley
- [2] C. Ray Wylie & Louis Barrett, "Advanced Engg. Mathematics", 6thEdition, New York : McGraw-Hill, c1995.
- [3] K. B. Datta, "Mathematical Methods of Science and Engineering", First edition, Cengage Learning India, 2011
- [4] M. R. Spiegel, "Laplace Transforms", McGraw-Hill Education (1 January 1965)
- [5] David G. Luenberger," Introduction to Linear and Nonlinear Programming", Addison-Wesley Publishing Company

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	Т	Р	L	Т	P	Total	
		3			3			3	
	Advanced Data	Examination Scheme							
CE31	Advanced Data Structures			Г	Theory I	Marks			
			ISE	1	MSE	ESE		Total	
			20		20	60		100	

Pre-requisite Course Codes	ES4-]	Programming Methodology and Data Structures
After successfu	l compl	etion of the course student will be able to
	CO1	Implement various operations of non-linear data structures.
Course	CO2	Apply the concepts of Trees and Graphs to a given problem.
Outcomes	CO3	Build various Heap Structures
	CO4	Illustrate the hashing and collision resolution techniques

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1		Linear and Non-linear Data Structures		
		Introduction to Data Structures, Review of Stack, Queue and	1,2	05
		Singly Linked List.		
		Types of Linked Lists and it's applications: Circular Linked List,		
		Doubly Linked List, Application of Linked List.		
2		Trees		
	2.1	Binary Tree Terminology, Binary Search Tree and its operations,	1,2	04
		Binary Tree Traversal, Expression Tree		
	2.2	AVL Trees- Properties of AVL trees, Rotations, Insertion, and	1,2	03
		Deletion		
	2.3	B-Trees- Definition of B-trees, Basic operation of B-Trees,	1,2	04
		Deleting a key from B-Trees		
	2.4	Introduction to B+ Trees	1,2	03
	2.5	Introduction to Multidimensional Trees, Segment trees, k-d trees,	3	05
		Point Quad trees		
3		Graph		
		Introduction To Graph, Representation of Graph- Adjacency	1,2	04
		Matrix, Adjacency List, Graph Traversal Technique		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

4	4.1	Heap Structure Introduction to Heap Structures, Min Heap, Max Heap, Construction of Heap	2	04
	4.2	Fibonacci heaps- Structure of Fibonacci heaps, Mergeable-heap, operations, Decreasing a key and deleting a node	2	06
5		Hashing Introduction to Hash Table, Hash functions, Collision Resolution Technique	1,2	04
			Total	42

- (1) Thomas H.Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, Massachusetts, 2009.
- (2) Horowitz E, Sahni S and S. Rajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Galgotia Publications, New Delhi, 2010
- (3) V. S. Subrahmanian , "Principles of Multimedia Database Systems", Morgan Kaufman Series in data Management Systems, Second Edition, USA, 2013.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
CE32		3			3			3
	Digital Logic Design and Analysis	Examination Scheme						
		ISE			MSE	ESE	,	Total
		20			20	60		100

Pre-requisit	e Cours	Codes ES11 (Basic Electrical and Elect	ronics Engineering)				
After success	After successful completion of the course, student will be able to:						
	CO1	Design of digital circuits using SOP & POS for	rms.				
	CO2	Construct combinational circuits using given I	MSI devices.				
Course	CO3	Apply the knowledge of flip-flops and MSI to design counters and Shift					
Course Outcomes		registers.					
Outcomes	CO4	Design state machines for given state diagram	s after state reduction.				
	CO5	Describe different types of programmable log	ic devices like PAL, PLA,				
		CPLD and FPGA.					

Module	Unit	Topics	Ref.	Hrs.
No.	No.			
1	1.1	Introduction to Number System & Digital Logic:	1,2,3	16
		Introduction to Number System, Basic gates, Universal gates, Sum		
		of products and products of sum, minimization with Karnaugh		
		Map (up to four variables) and realization. QuineMccluskey		
		method.		
	1.2	Logic Families: Types of logic families (TTL and CMOS),	1,2,3	
		characteristic parameters (propagation delays, power dissipation,		
		Noise Margin, Fan-out and Fan-in), transfer characteristics of TTL		
		NAND, Interfacing CMOS to TTL and TTL to CMOS.		_
	1.3	Combinational Circuits using basic gates as well as MSI	1,2,3	
		devices: Half adder, Full adder, Half Subtractor, Full Subtractor,		
		Multiplexer, De-multiplexer, Decoder, Comparator (Multiplexer		
		and De-multiplexer gate level up to 4:1).		
2	2.1	Sequential Logic: Latches and Flip-Flops. Conversions of Flip-	1,2,3,4	05
		Flops, Timing Considerations and Metastability		
3	3.1	Counters: Asynchronous, Synchronous Counters, Up Down	1,2,4,5	11
		Counters, Mod Counters.		
	3.2	Mealy and Moore Machines, Clocked synchronous state machine	1,24,5	
		analysis, State reduction techniques and state assignment, Clocked		
		synchronous state machine design.		
	3.3	MSI counters and applications.	1,2,4,5	
4	4.1	Shift Registers: Shift Registers, Ring Counters, Universal Shift	1,2,4,5	05
		Register, MSI Shift registers and their applications.		
5	5.1	Programming Logic Devices: Concepts of Programmable Array	1,2,4,5	05
		Logic (PAL) and Programming Logic Array (PLA).		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	Introduction to Complex Programmable Logic Device (CPLD) and Field Programmable Gate Array (FPGA) architectures.	1,2,4,5		
		Total	42	ĺ

- [1] R. P. Jain, "Modern Digital Electronics", 4th Edition, Tata McGraw Hill, 2009.
- [2] Morris Mano, "Digital Design", 5th edition, Pearson Education, 2013.
- [3] William I. Fletcher, "An Engineering Approach to Digital Design", 1st Edition, PHI, 2009.
- [4] John F. Wakerley, "Digital Design Principles And Practices", 3rd Edition Updated, Pearson Education, Singapore, 2002
- [5] B. Holdsworth and R. C. Woods, "Digital Logic Design", 4th Edition, Newnes, 2002.

Course	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
Code		L	Т	Р	L	Т	Р	Total	
	Discrete Structure and Graph Theory	3	2		3	1		4	
		Examination Scheme							
CE33		Theory Marks							
		-	ISE	1	MSE	ESE		Total	
			20		20	60		100	

Pre-requisite Course Codes		Codes (Basic Mathematics)						
At the end of su	At the end of successful completion the course, students will be able to							
	CO1	Cultivate clear thinking and problem solving ability						
	CO2	Use various mathematical notations, apply various proof techniques to						
		solve real world problems						
Course	CO3	Learn and apply core ideas of Set Theory, Logic, Relations Functions,						
Outcomes		Recurrence Relations						
Outcomes	CO4	Use Graphs, Trees and their various types with their traversing						
		techniques to solve practical examples.						
	CO5	Understand the applications and make use of Algebraic Structures and						
		Lattice to solve the problems.						

Module	Unit	Topics	Ref.	Hrs
No.	No.			•
1	1.1	Set Theory – Finite and infinite set, Union, Intersection, Disjoint,	1,2,	2
		and Difference of two sets. Power Set, Partition of Sets, Ordered	3	
		Sets, De Morgan's Laws, Principle of Inclusion Exclusion		
	1.2	Logic – Propositional Logic, Propositional Equivalences,	1,2,	3
		Predicates and Quantifiers, Nested Quantifiers, Methods of	3	
		Proof, Mathematical Induction		
	1.3	Relations and Diagraphs – Product Sets and Partitions, Paths in	1,2,	4
		relations and Diagraphs, Properties of Relations, Closure of	3	
		Relation, Equivalence Relations, Operations on Relations,		
		Warshall's Algorithm		
	1.4	Partially Ordered Sets, Extremal Elements of Partially Ordered	1,2,	2
		Sets, Hasse Diagram	3	
2	2.1	Functions- Composition of Functions, Invertible Functions,	3	2
		Recursive Functions,		
	2.2	Hashing, Pigeon hole Principle, Extended PHP	2,3	2
	2.3	Recurrence Relations – Introduction, Linear Recurrence	3	4
		Relations with constant coefficients, Homogeneous solutions,		
		Particular Solutions, Total Solutions, Solution by the method of		
		Generating functions, solving Recurrence Relations		
3	3.1	Graph Theory Concepts and terminologies- Graphs as Model	2,4,	2
			5	
	3.2	Matrices, Isomorphism, Bipartite Graphs, Directed Graphs	2,4,	2
			5	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	3.3	Properties of trees, Minimal Spanning trees, Shortest Paths	2,4	3
4	4.1	Graph: Connectivity, Coloring, Cycles – Transport Networks,	2,4,	3
		Max Flows, Matching Problems, Maximum Bipartite Matching	5	
	4.2	Euler Paths- Circuits, Hamiltonian Paths- Circuits	2,4,	2
			5	
	4.3	Coloring Graphs, Chromatic Polynomial, Planer Graphs	2,4,	3
			5	
5	5.1	Algebraic Structures - Semigroup, Monoids, Groups, Rings,	1,2,	3
		Integral Domain Rings	3	
	5.2	Isomorphism, Homomorphism, Auto morphism, Coding Theory	1,2,	3
			3	
	5.3	Lattice, Sub lattice, Isomorphic Lattices, Properties of Lattice,	1,2,	2
		Special Types of Lattices	3	
			Total	42

- Kenneth H. Rosen, "Discrete Mathematics and its applications", Tata McGraw Hill, 7th Edition / latest edition, ISBN 0-07-293033-0 HB.
- [2] Bernard Kolman, Robert C. Busby, "Discrete Mathematical Structures", Pearson, Latest Edition
- [3] C. L. Liu, D. P. Mohapatra, "Elements of Discrete Mathematics", Tata McGrawHill.
- [4] Douglas West, "Graph Theory", Pearson, 2nd Edition
- [5] NarsinghDeo, "Graph Theory with applications to Engineering and Computer Science ", Prentice Hall India
- [6] ReinhardDiestel, "Graph Theory", Springer-Verlag-New York, 5 th Edition, ISBN 978-3-662-53621-6 eISBN 978-3-96134-005-7

Course	Course Name		Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	P	Total	
		3	-		3	-		3	
	Object Oriented	Examination Scheme							
CE34	Programming	Theory Marks							
			ISE	I	MSE	ESE		Total	
			20		20	60		100	

Pre-requis	ite Cou	urse Codes ES4: Programming Methodology and Data Structures			
After succe	ssful c	ompletion of the course, student will be able to:			
	CO1	Demonstrate object oriented programming paradigm.			
CO2 Solve problems using inheritance & package.					
Course	CO3	Use file handling concepts in Java for data input and output.			
Outcomes	CO4	Apply concepts of multithreading and exception handling to create efficient			
program.					
	Make use of string and collection classes.				

Module No.	Unit No.	Topics	Ref.	Hrs.
1 1	INO.	BASIC OF JAVA	2	
	1.1	History & features, Difference between JDK,JRE,JVM, Unicode system, Advantages of OOP		
	1.2	Object & Class, Constructor , Command line argument, Static Variable, Method & block		4
	1.3	Branching & looping		
2		OOP CONCEPTS	1,2,4	
	2.1	Inheritance (IS – A), Aggregation & Composition (Has – A)	_	
	2.2	Method overloading & overriding, Constructor overloading & overriding, this, super, final keyword		8
	2.3	Runtime polymorphism, Static and Dynamic Binding		
3		ABSTRACT CLASS, INTERFACE, PACKAGE	1,2	
	3.1	Abstract class & interface, instanceof operator		
	3.2	Package and access modifier		5
	3.3	Object class, Nested class		5
4		STRING HANDLING	1,2	
	4.1	Immutable string ,Methods of String class,		
	4.2	String comparison, concatenation, substring, toString method		4
	4.3	StringBuffer class, StringBuilder class, StringTokenizer class		
5		EXCEPTION HANDLING	1,2	
	5.1	What & why? Try & catch block, Multiple catch block, Nested		
		try, Finally block		5
	5.2	Throw, Throws keywords, Exception propagation		5
	5.3	Custom exception		
6		MULTITHREADING	1,2	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	6.1	Life cycle of a – thread, Create thread using, Thread & Runnable class		
	6.2	Thread methods, schedule, sleep, join, Thread priority, Thread group, Perform multiple task using multiple thread	-	5
	6.3	Thread synchronization		
7		COLLECTION	1,2	
	7.1	Collection framework, ArrayList, LinkedList		
	7.2	HashMap, HashTable		5
	7.3	Comparable & Comparator		
8		INPUT & OUTPUT	2	
	8.1	FileOutputStream&FileInputStream, BufferedOutputStream&BufferedIinputStream, FileWriter&FileReader		6
	8.2	Scanner, PrintStream, PrintWriter, CharArrayWriter		
	8.3	StreamTokenizer class		
			Total	42

- [1] Ralph Bravaco ,ShaiSimoson , "Java Programing From the Group Up" ,Tata McGraw-Hill.
- [2] Herbert Schildt, "Java The Complete Reference", Tata McGraw-Hill.
- [3] Jaime Nino, Frederick A. Hosch, "An introduction to Programming and Object Oriented Design using Java", Wiley Student Edition.
- [4] C Xavier, "Java Programming A Practical Approach", Tata McGraw-Hill.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	Т	Р	L	Т	Р	Total	
				2			1	1	
CEL31	Advanced Data Structures Lab			Ex	xamination Scheme				
CEL51		ISE		MSE		ESE	Total		
			40				20	60	

Pre-requisite Course	ES4-1	ES4- Programming Methodology and Data Structures				
Codes	CE31	CE31- Advanced Data Structures				
After successful comple	tion of	the course, student will be able to				
	CO1	Implement various Linked List Operations.				
	CO2	Implement various Operations of Trees and Graphs.				
Course Outcomes	CO3	Construct different Heap structures.				
	CO4	Analyze different hashing and collision resolution techniques.				
	CO5	Choose an appropriate data structure to solve a given problem.				

Exp.	Experiment Details	Ref.	Marks
No.			
1	Implement a given scenario using Linked List.	1,2	5
2	Construct an expression tree using Binary Trees Concept	1,2	5
3	Develop an application to explore the uses of an AVL tree	1,2	5
4	Develop Search application using B-Tree.	1,2	5
5	Demonstrate an application using B+ Tree	1,2	5
6	Implement Operations of Heap Structures	2	5
7	Implement hash functions with different collision resolution techniques	1,2	5
8	Traverse a Graph using Graph Traversal Technique	1,2	5
		Total Marks	40

ESE Evaluation:

The ESE evaluation will take place through Practical Examination based on the Lab course at the end of semester. The distribution of marks is as follows.

Practical: (Any experiments based on the Lab course): 10 Marks

Oral: (Oral based on any experiments in the Lab course): 10 Marks

- (1) Thomas H.Cormen, Charles E. Leiserson, Ronald L Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, Massachusetts, 2009.
- (2) Horowitz E, Sahni S and S.Rajasekaran, "Fundamentals of Computer Algorithms", Second Edition, Galgotia Publications, New Delhi, 2010

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Т	Р	Total
CEL32	Digital Logic Design & Analysis Lab			2			1	1
		Examination Scheme						
		ISE		MSE		ESE		Total
		40						40

Pre-requisite Course Codes		Codes	ES11 (Basic Electrical and Electronics Engineering)					
			CE32 (Digital Logic Design and Analysis)/IT32 (Digital Logic					
			Design and Analysis)					
At the End of the course students will be able to								
	CEL32.1	Consti	ruct and test logic circuits using logic gates to realize given function.					
Course	CEL32.2	Constr	ruct and Test logic circuits using MSI ICs to realize given function.					
Course Outcomes	CEL32.3	Constr	ruct and test the design of combinational and sequential logic circuits					
Outcomes		by har	dware implementation.					
	CEL32.4	Constr	uct and test design of counters/shift registers.					

Exp. No.	Experiment Details	Ref.	Marks
1	To implement the combinational logic for given function using basic	1,2	5
	gates/MSI ICs and study NAND, NOR as universal gate.		
2	2 To implement Binary to Grey, Grey to Binary Code conversion, BCD		5
	adder and BCD to Seven segment decoder using MSI ICs.		
3	To implement 4-bit, 5-bit and 8 bit comparator using MSI ICs	1,2	5
4	To implement functions using multiplexer MSI ICs	1,2	5
5	To implement functions using demultiplexers/Decoder using MSI ICs.	1,2	5
6	To design and implement MSI circuits of flip-flops and conversion of	1,2	5
	one Flip flops to another one.		
7	To configure MSI devices as asynchronous counter, synchronous counter	1,2	5
8	To configure universal shift register in various mode.	1,2	5
Total Marks			

- (1) For datasheet refer: <u>http://www.datasheetcatalog.com</u>.
- (2) R. P. Jain and M. M. S. Anand ,"*Digital Electronics Practice Using Integrated Circuits*," Tata McGraw Hill Education, 1983.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned				
		L	Т	Р	L	Т	Р	Total	
	Object Oriented Programming Lab			2			1	1	
CEI 24		Examination Scheme							
CEL34			ISE		MS	E	ESE	Total	
		40				20	60		

Pre-requisite Course Codes		Codes ES4: Programming Methodology and Data Structure CE34: Object Oriented Programming				
After successful completion of the course, student will be able to:						
	CO1	Demonstrate object oriented programming concepts for a scenario.				
G	CO2	Apply static and dynamic binding.				
Course outcomes	CO3	Apply concept of input, output and JDBC.				
outcomes	CO4	Apply multi-threading and exception handling for a scenario.				
	CO5	Design a java application using J2EE, Swing etc				

Exp. No.	Experiment Details	Ref.	Marks	
1	Program using conditional and control statements.	1,2,3,4	5	
2	Program on Polymorphism.	1,2,3,4	5	
3	Program on Inheritance, Aggregation, Composition	1,2,3,4	5	
4	Program on Package, Nested Class, String, Collection	1,2,3,4	5	
5	Program on Exception Handling	1,2,3,4	5	
6	Program on Multithreading, I/O, JDBC	1,2,3,4	5	
7	Mini project using Struts, J2EE, Swing etc	2,5,6	10	
Total Marks				

ESE Evaluation:

The ESE evaluation will take place through Practical Examination based on the Lab course at the end of semester. The distribution of marks is as follows.

Practical: (Any experiments based on the Lab course): 10 Marks

Oral: (Oral based on any experiments in the Lab course): 10 Marks

- [1] Ralph Bravaco ,ShaiSimoson ,"Java Programing From the Group Up", Tata McGraw-Hill
- [2] Herbert Schildt, "Java The Complete Reference", Tata McGraw-Hill.
- [3] Jaime Nino, Frederick A. Hosch, 'An introduction to Programming and Object Oriented Design using Java', Wiley Student Edition.
- [4] C Xavier, "Java Programming A Practical Approach", Tata McGraw-Hill.
- [5] James Holmes "Struts: The Complete Reference" Tata McGraw-Hill.
- [6] Jim Keogh, "J2EE: The Complete Reference" Tata McGraw-Hill.

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total
				2			1	1
		Examinat	ation Scheme					
CEL35	Linux Lab	IS	SE	Μ	SE	E	SE	Total
		4	0	-	-			40

Pre-requisite	Course	e Codes ES24 (Programming Methodology and Data Structures)					
At the End of t	At the End of the course students will be able to						
	CO1 Demonstrate the knowledge of Linux File structure and installation process.						
	CO2 Select and apply appropriate Linux command and utility to get desired output/results.						
Course	CO3	Apply administrative skill for system and user management.					
Outcomes	CO4	Manipulate and manage file system, disk and software.					
	CO5 Use Text processing Utility.						
	CO6	Write Shell script and Shell Function.					

Exp. No.	Experiment Details	Ref.	Marks
(3)	Linux Installation and File System <u>content</u> : - Introduction to OS (Unix, Linux, rpm, debian) - Installation of Linux(Ubuntu installation) - Linux File Structure	1, 5, 6	5
2.	Managing Software (Binaries and Source) <u>content:</u> - User root user account - Using Administrative Commands and Files - Using Different run-level - Managing software using apt-get - Getting a package using wget - Zip, Tar, Gunzip, Bzip	1, 5, 6	5
3.	Linux Commands <u>content</u> : - File Management Commands (ls, metacharacter, cat, wc, cp, mv, rm,) - Directories Command (cd, pwd, mkdir, rmdir, rm, mv) - Pipes and filter command(grep, sort, more) - Process Management Commands(ps, top, kill) - Linux Editors(vim, nano, gedit)	1, 4, 5, 6	5
4.	User Administration <u>content</u> : - Add and manage User - Add and manage Group - Setting Permission with ACL - Adding Directories for user to collaborate	1, 4, 6	5

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	- File Permission Managing Commands (chmod, chown, chgrp)		
5.	Shell Scripting content: - Shell scripting(Bourne and C Shell, Shebang Construct, Basic Shell and Extended Shell) - Using Variables, Special Variables, Arrays in Shell Script - Using Basic Operators in Shell Script - Using Decision making Statements, Loops and Loop Control in Shell Script	1, 3	5
6.	Shell Function and Cron content: - Shell Functions - Using Substitution, Quoting mechanism, IO redirection in Shell Script - Cron and Shell Script	1, 3	5
7.	Text Processing and Manipulation <u>content</u> : - SED - AWK - GAWK	2	5
8.	Managing Disk and File System content: - Partitioning Disk - Mounting File system - Checking, creating and managing LVM (Logical Volume Manager)	1, 5	5
		Marks	40

- [1] Christopher Negus, "Linux Bible", Wiley Publication, 8th Edition.
- [2] Dale Dougherty and Arnold Robbins, "sed&awk", O'Reilly Media, 2nd Edition.
- [3] Cameron Newham," Learning the bash Shell", O'Reilly Media, 3rd Edition.
- [4] Richard Petersen, "Linux: The Complete Reference", McGrawHill, 6th Edition.
- [5] Matthew Helmke, "Ubuntu Unleashed", SAMS Pearson Education, 2015 Edition.
- [6] Christine Bresnahan and Richard Blum, "Linux Essentials", Wiley/Sybex, 2nd Edition.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course		C	ourse Name	Teachi	ing Sche	me (Hrs/week)		Credit	s Assigne	ed		
Code			burse Manne	L	Т	Р	L	Т	Р	Total		
				2			2			2		
DC22		Hu	man Health			ne						
BS32		Syste	ms Approach	ISE1 ISE2 Attenda				tendaı	nce	Total		
			. II	2	0	20		10		50		
Methodolo	gy for e	evaluating	students for ISE1 and	ISE2 shal	ll be pre-	declared by the co	ourse te	acher.				
Pre-requis	site Cou	irse Code	es									
After suc	cessfu	l compl	etion of the course,	student	will be	able to understa	and					
		CO1 Physiology as integrated interdisciplinary Science										
Course		CO2	Physiological signific		1	2	in healt	h				
Outcom		CO3										
		CO4	Dynamics and homeostasis of human health									
			•						D.C			
Module	Unit	Topic	S						Ref.	Hrs.		
No.	No.								1	-		
1			nizational Systems ular, Cellular and Orga	n Crustom	-				1	2		
	1.1 1.2			n System	5					2		
	1.2		gical Molecules emistry, Biophysics, M	-1	Vialager							
2						Ind bloengmeerin	lg		1	7		
2			olecular Supply Chain ive System: Nutrient su			d Diat			1	7		
	2.1		atory System and effec			d Diet				2 2		
	2.2		ovascular System, Bloo			nd Plood Panart				2		
	2.3		ilo-skeletal System and							1		
3		FluidDy		exercise	Filysioic	ng y			1	4		
3	3.1	Body							1	2		
	3.2		ys as Filtration Units ar	d thair D	hysiolog	ical Functions						
	3.3		ys as Philation Onits an		nysiolog					1		
	3.4		y and Urinary Stones, a	nd Dialw	ric					1		
4			dination and Regulato						1	4		
-7	4.1		Organs	y byste	11.3				1	1		
	4.2		us systems							2		
	4.3		rine Systems (Pancreas	and Dial	etes Th	vroid and its func	tions)			1		
5		ise Syster				jiona and its fulle			1	3		
0	5.1		mentary System							1		
	5.2	-	ne System							2		
	5.2	innu								⁻		
6			logy and Genetical In		n				2	6		
	6.1		tary Molecules: DNA 1							2		
	6.2		ntal flow of Genetic Inf							2		
	6.3	Vertica	l flow of Genetic Infor	mation						2		
									Total	26		

- [1] Text book of Anatomy and Physiology for Nurses and allied Health Sciences by InduKhurana&Arushi
- [2] Simplified Course in Molecular Biology by V. K. Agarwal S. Chand Publication

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course	Course Name	Tea	ching Sc	heme	Credits Assigned					
Code		L	Т	Р	L	Т	Р	Total Total 50 20 Marks		
		2	-	-	Non-Credits					
BC	Fundamental of			Exa	mination	Scheme		Total		
	Mathematics	IS	E1	IS	E2 Attendance Tot			Total		
		2	20		0	10		50		
Student wil	Student will be evaluated after completion of 50% syllabus for 20 Marks (ISE1) and at the end of course for 20 Marks									

(ISE2). Grade equivalent to 'D' (50%-59.99% Marks) or above is considered as 'Satisfactory'. If any of the tasks given is not completed/submitted/shown/evaluated then the corresponding lower grade will be given. Although the grades are given they will not mentioned in final grade card but they are necessary to declare the successful completion of the Non-Credit course.

After successful	After successful completion of the course, student will be able to									
	CO1	To find basic derivatives, Integration and limits.								
Course	CO2	To find rank of a matrix and solve system of linear equations using rank.								
Course Outcomes	CO3	To find partial derivative of a function and apply it to extremise functions.								
Outcomes	CO4	To solve differential equations of first and higher order.								
	CO5	To find roots & logarithm of a complex number.								

Modul e No	Module name	Unit No.	Topics	Ref.	Hrs.
1.	1. Derivatives		Derivative of functions which are expressed in one of the following form a) product of functions, b) quotient of functions, c) derivatives of trigonometric function	1,2,5,6,7	1
		1.2	Application of Derivatives: Rolls theorem and Mean value theorem	1,2,5,6,7	1 1 1 1 1 1 1 1 1 1 1
		2.1	Indefinite integrals-methods of integration, substitution method.	1,2,5,6,7	1
2.	Integration	2.2	Evaluation of definite integral 1) bysubstitution, 2) integration by parts,	1,2,5,6,7	1
		3.1	Rank of Matrix, Normal form	1,2,3,4,6	1
3.	Basic of Matrices	3.2	Consistency and solution of simultaneous linear homogeneous and Non-homogeneous equations. Linear Dependence & independence vectors	1,2,3,4,6	1
		4.1	Partial derivatives of first and higher order, Chain Rule & Composite function	1,2,3,4,7	1
4.	Partial Differentiation	4.2	Euler's theorem on homogeneous functions with two and three independent variables	1,2,3,4,7	1
		4.3	Application of partial derivatives: Maxima and Minima of functions of two variables.	1,2,3,4,7	1 1 1 1 1 1

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

		5.1	Exact Differential Equation,		
	Differential		Linear Differential Equation with constant		
	Equations of		coefficient- complementary function,		
5.	first & higher	5.2	particular integrals of differential equation	1,2,3,4,	3
	order		of the type $f(D)y = X$ where X is		
			e^{ax} ,sin(ax+b)		
		5.3	$\cos(ax+b), x^m, e^{ax}V, xV$		
6.	Indeterminate	6.1	Indeterminate forms, L- Hospital Rule	7	1
0.	forms	0.1		/	1
		7.1	Roots of complex numbers by De'moivre's		1
	Basics of	/.1	Theorem		1
7.	Complex	7.2	Relation between circular and hyperbolic	1,2,3,4	1
	Numbers	1.2	function		1
		7.3	Logarithm of complex numbers.		1
				Total	16
				i Utai	10

- [1] Dr.B.S.Grewal," Higher Engineering Mathematics" by Khanna Publication, New Delhi, 42ndEdition.
- [2] H.K. Das, "Advanced Engineering Mathematics", byS.ChandPublication.NewDelhiTwelfth Revised Edition, 2004
- [3] Erwin Kreyszig," Advanced Engineering Mathematics", by John Wiley Eastern Limited, UK Ninth Edition,
- [4] Shanti Narayan, P. K. Mittal," A Text book of Matrices", by S. Chand publication, New Delhi, Eleventh Edition.
- [5] Maharashtra state board of secondary and higher secondary education, Pune, Edition 2017.
- [6] George B. Thomas, Ross L Finney," Calculus and Analytical Geometry by NarosaPublishing House, Mumbai, Ninth Edition.
- [7] P.N.Wartikar and J.N.Wartikar," A text book of Applied Mathematics, Vol I and II by
- [8] VidyarthiGrihaPrakashan, Pune. Ninth Revised Edition, 2004.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Semester IV

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	S	eachir chem rs/we	ie	Credits Assigned			
		L	Т	P	L	Т	Р	Total
		3	1		3	1		4
BS41	Applied Methomotics II			Examir	nination Scheme			
D341	Applied Mathematics-II	ISE		MSE	ESE			Total
		20		20		60		100

Course Objectives:

• To familiarize learners with mathematical tools and methods to solve engineering problems

Course Outcomes:

Pre-requisite course codes	BS11 (Engineering Mathematics I) BS21 (Engineering Mathematics II)
After successful completion of	the course, student will be able to

	CO1	Check if matrix is diagonalizable, derogatory & to calculate functions of a square matrix.
Course	CO2	Find Correlation between two variables.
Course Outcomes	CO3	Find the measures of central tendency
	CO4	Solve a problem by identifying the appropriate distribution.
	CO5	Test the hypothesis for means and variances for single and multiple samples using't'& chi-square distribution tests.

Module	Module	Unit	Topics	Ref.	Hrs.
No	name	No.	Topics	I.C.I.	111.5.
		1.1	Eigen values and Eigen vectors and its properties.		04
1		1.2	Cayley-Hamilton theorem and its applications.		02
	Matrices	1.3	Similar matrices, diagonalizable matrices. Singular Value Decomposition.	1,3,4	04
			Derogatory and non-derogatory matrices,		03
		1.4	functions of square matrix.		05
		1.5	Application to finding google page rank		01
			Random Variables: - discrete & continuous		
		3.1	random variables, expectation, Variance,		04
		5.1	Probability Density Function & Cumulative	0.2.4	04
2	Probability		Density Function.	2,3,4, 5	
	-	3.2	Moments, Moment Generating Function.		02
		3.3	Probability distribution: binomial distribution, Poisson & normal distribution.		07

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

				Total	42hrs
	Regression	2.2	Regression.	1,3,4	04
4	Correlation and	2.1	Karl Pearson's coefficient of correlation, covariance, Spearman's rank correlation		03
5	5 Theory	4.2	Testing of hypothesis using't' and chi- square distribution tests.	5	04
3	Sampling	4.1	Sampling, point and interval estimations, Test a hypothesis using Large sample test	2,3,4,	04

NOTE: ISE component will be evaluated through assignments conducted in the tutorial sessions. (tutorials will be conducted class –wise)

- [1] Kreyszig, "Advanced Engineering Mathematics", 9thedition, John Wiley
- [2] Kishor S. Trivedi, "Probability & Statistics with reliability", 2nd edition, Wiley India
- [3] C. Ray Wylie & Louis Barrett, "Advanced Engg. Mathematics", 6th Edition, New York : McGraw-Hill, c1995.
- [4] K. B. Datta, "Mathematical Methods of Science and Engineering", First edition, Cengage Learning India, 2011
- [5] Sheldon M. Ross, "Introduction to Probability and Statistics for Engineers and Scientists", 3rd, Elsevier Academic Press,2004

Course			(Course Nam	e		ning Sc [rs/wee			Credits As	signed			
Code						L	Т	Р	L	Т	Р	Total		
						3			3			3		
CE41		D	esig	n and Analy	sis of	Examination Scheme Theory Marks								
CE41				Algorithms			ISE		<u>MSE</u>	ESE	Г	fotal		
							<u>20</u>		20	60 ESE		100		
Pre-requ	icit			na Cadaa		rogrami		Inthode	-	d Data struct		100		
rie-requ	1511		Juis	se Coues	CE31 (.	-	-			u Data struct	uies)			
At the en	d of	f suc	ces	sful completi	,				,	to				
		CO		Analyze ti										
		CO	2	Apply divid			-		0					
Course		CO								ynamic progr	ammi	ng		
Outcom		CO	4	Apply the c	oncept o	f greed	y appro	ach to	solve pr	oblems				
Outcom	63	CO	5		e idea of	backtra	acking,	branch	and bou	und strategy	to solv	ve		
				problems.										
		CO			oncept o	f linear	progra	mming	to optin	nize the solu		-		
Module		nit	Τα	opics							Ref.	Hrs		
No.	N		-									•		
1	1	.1		troduction to	•	0		1	•,		1,2,	10		
			Performance analysis, space and time complexity Growth of function – Big –Oh, Omega, Theta notation							3				
			Mathematical background for algorithm analysis,											
				alysis of sele	-		-	•	,					
	1	.2		currences:							1			
				e substitution										
				cursion tree 1	nethod									
	-	•		aster method							1.5			
		.3		vide and Con eneral method		proach	1:				1,5			
				alysis of Me		Analysi	s of Ou	lick sor	t. Analy	sis of Binary				
				arch, Finding	-	•	-		•	•				
				rassen's matri										
2	2	.1	•	namic Prog		g Appro	ach:				1,2,	12		
				eneral Method							3			
				sembly-line s	schedulin	g								
				l knapsack avelling sales	man nrob	olem								
				ongest commo										
	2	.2		reedy Metho							1,2,			
			Ge	eneral Method	1						3			
				ngle source sl	-	th								
				napsack probl			1 1		. 2 . 1	: 1				
				inimum cost s			ruskal a	ind prir	n's algor	ithm				
		Hamming code Algorithm												

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

3	Backtracking and Branch-and-bound:	1,4	06
	General Method		
	8 queen problem(N-queen problem)		
	Sum of subsets		
	Graph coloring		
	15 puzzle problem,		
	Travelling salesman problem.		
4	Linear Programming	1	08
	Standard and slack forms		
	Formulating problems as linear problems		
	The simplex algorithm		
	Duality		
	The initial basic feasible solution		
5	String Matching Algorithms:	1,5	06
	The naïve string matching Algorithms		
	The Rabin Karp algorithm		
	String matching with finite automata		
	The knuth-Morris-Pratt algorithm		
i	· · · ·	Total	42

- 1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, "*Introduction to algorithms*", 3rd edition, PHI publication 2009.
- 2. Ellis Horowitz, SartajSahni, S. Rajasekaran. "*computer algorithms*" 2nd edition, Computer Science Press, 1997
- 3. SanjoyDasgupta, Christos H. Papadimitriou, UmeshVazirani, "*Algorithms*", 1st edition, Tata McGraw- Hill, 2006.
- 4. Jon Kleinberg, Eva Tardos, "Algorithm Design", 1st edition, Pearson, 2006.
- 5. Michael T. Goodrich, Roberto Tamassia, "*Algorithm Design and Application*", 1st edition ,Wiley Publication, 2015.

Course			Course Name		hing Sc Irs/wee		•	Credits As	signed			
Code				L	Т	P	L	Т	Р	Total		
				3		-	3		-	3		
		Da	tabase management			Ex		on Scheme				
CE42		Du	System		_ ~		Theory					
					ISE		MSE	ESE		otal		
					20		20	60		100		
Pre-requ	isite	e Co	urse Codes -									
At the end	d of	succ	essful completion of thi		-							
		CO1	U	base sy	stems, I	leadin	g to deve	elopment of e	elegant			
			Information System.									
Course		CO2	7		em and	l cons	truct a rel	lational datab	base.			
Outcome		CO3										
		CO4	0									
		CO5	Analyze the effect of	concur	rency c	ontrol	for trans	action proce	ssing.			
Module	Ur	nit	Topics						Ref.	Hrs.		
No.	No).	-									
1			Introduction Database	Conce	pts and	I ER I	Modeling	5				
1	1.	1	Introduction Database	Conce	pts				1,2,3			
			Introduction, Characteri				•			04		
			Database system, Users		•							
			Administrator, Concern									
			Data Independence, cod	ld's Rul	e, DBN	1S sys	stem arch	itecture,				
	1.	2	ER Modeling		<u> </u>					0.4		
			Introduction to ER mod				•			04		
			data Models, Phases of			0		•				
			Relationship (ER) Mode									
2			Aggregation, Extended Relational Algebra an			isnip		ouel.	1,2,3			
4			-						1,2,3			
	2.		Relational Algebra				1.1.4. (1	D-1-4 1	4	05		
			Introduction, Mapping t									
			Model, Data Manipulat Relational Algebra Que					al Algebra,				
	2.		SQL	1105, ICC	anona	cal	u1u5.		-	10		
	<u>_</u> .		Overview of SQL, Data	Definit	tion Co	mman	ds Set o	nerations	-			
			aggregate function, null									
			Data Control commands	,	,		L	,				
			queries ,PL/SQL	. ,	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			· · · · · · · · · · ·				
3			Relational database de	esign					1,2,3			
	3.		Integrity and Security	<u> </u>	abase				1			
			Domain Constraints, R			grity,	Assertio	ns, Trigger,		03		
			Security, and authorizat									
			Normalization						1	05		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	3.2	Design guidelines for relational schema, Functional		
		dependencies, Normal Forms- 1NF, 2 NF, 3NF, BCNF and 4NF		
4		Transaction Processing	1,2,3	
	4.1	Transactions Management		
		Transaction concept, Transaction states, ACID properties,		
		Implementation of atomicity and durability, Concurrent		05
		Executions, Serializability, Recoverability, Implementation of		
		isolation, Concurrency Control: Lock-based, Timestamp-based,		
		Validation-based protocols, Deadlock handling,		
	4.2	Recovery System		
		Failure Classification, Storage structure, Recovery and		03
		atomicity, Log based recovery, Shadow paging.		
			Total	39

References:

[1] Korth, Slberchatz, Sudarshan, :"Database System Concepts", 6th Edition, McGraw – Hill

[2] Elmasri and Navathe, "Fundamentals of Database Systems", 5th Edition, PEARSON Education.

[3] G. K. Gupta :"Database Management Systems", McGraw – Hill.

[4]Peter Rob and Carlos Coronel, "Database systems Design, Implementation and Management", Thomson Learning, 5th Edition.

[5] Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH

Course Code	Course Name		hing Sc Irs/wee		Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
		3		-	3		-	3
		Examination Scheme						
CE43	Operating Systems			1	Theory Marks			
			ISE	I	MSE	ESE		Total
		20 20		20	60		100	

Pre-requisite (Course C	odes C	EL35 (Linux Lab)							
At the end of successful completion of the course, student will be able to										
	CO1	Explain the basic functions of operating systems- Understanding								
	CO2	Make use Applying	of various process scheduling and disk scheduling algorithm -							
Course Outcomes	CO3	Experime	ent inter process communication solution - Applying							
Outcomes	CO4	Categoriz	e various memory management techniques - Analyzing							
	CO5	Explain	various file systems - Understanding							
	CO6	Discover	functions of operating systems in different environment-Analyze							

Modul	Unit	Topics	Ref	Hrs.
e No.	No.		•	
1		Introduction to Operating Systems		06
	1.1	Operating systems objectives and functions, Evolution of OS, Booting.	1,2, 3	2
	1.2	Process, system calls.	1	2
	1.3	Operating system structure.	3	2
2		Process Management		07
	2.1	Process description: Process, Process states, Process Control Block (PCB).	1	2
	2.2	Process Scheduling: FCFS, RR, SJF, Priority, Comparison of different scheduling policies.	1	3
	2.3	Threads and Thread management.	2	2
3		Process Synchronization		10
	3.1	Principle of concurrency, race condition, critical section.	1,2, 3	1
	3.2	Mutual Exclusion – Hardware and Software approaches, semaphores, monitors, message passing	1,2, 3	2

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	3.3	Synchronization problems: Readers Writers problem, Dining	1,2,	2
		Philosophers problem, Producer Consumer problem, Sleeping	3	
		Barber problem.		
	3.4	Deadlocks:Principles of deadlock, deadlock detection,	1,2,	5
		Deadlock Avoidance: Bankers algorithm, Deadlock prevention.	3	
4		Memory Management		08
	4.1	Memory management requirements.	1,2	1
	4.2	Memory partitioning.	1,2	1
	4.3	Virtual memory: paging; segmentation.	1,2	4
	4.4	Page replacement policies and page faults	1,2	2
5		File Management		04
	5.1	File structure, file system layout, file organization and access, file	1,2	2
		sharing, Record Blocking		
	5.2	Secondary storage management, NTFS	1,2	2
6		I/O Management		04
	6.1	I/O devices, Organization of the I/O function, Operating system	1,2	1
		design issues		
	6.2	I/O buffering, RAID.	1,2	1
	6.3	Disk scheduling and disk scheduling algorithms: FCFS, SSTF, SCAN, CSCAN, LOOK	1,2	2
7*		Explore operating system functions		03
	7.1	Real time OS, Mobile OS	1,2,	1
			3	
	7.2	Distributed OS	1,2,	1
			3	
	7.3	Cloud OS	1,2,	1
			3	
1			Total	42

* Chapter 7 will be evaluated as part of ISE for poster presentation. Reefernces:

- [1] Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey , 9th edition.
- [2] Maurice J. Bach, "The Design of Unix Operating System", Prentice Hall.

Course		Cou	ırse Nan	ne		ning So [rs/wee		2	Credits As	signed	
Code					L	Т	P	L	Т	Р	Total
					3		<u> </u>	3		-	3
	C	ompute	er Organ			Ex		n Scheme			
CE44	_		rchitect				Theory				
								MSE	ESE		Total
				-		20		20	60		100
Pre-requ					_	_	_		plications)		
At the end	d of su							ll be able	to		
		CO1		ribe basic s							
		CO2		y arithmeti							
Cours	se	CO3							ol signal gene	eration.	
Outcor	nes	CO4		ribe the me	÷			-			
		CO5		y I/O conce	-		-				
		CO6	To analy	ze differe	nt parall	el proce	essing	and pipel	ining concept	S	
Module	Unit	Topic	2S							Ref.	Hrs
No.	No.										•
1				omputer A							
	1.1								cture, Basic	1,4	4
		•		·				•	e functional		
								nann moc	lel, Harvard		
	1.2		Model, Embedded system, ARM architecture Performance Issues: Designing for performance, Multicore, Mics,							1,4	2
	1.4	GPGP		sues. Des	igning	tor per	iormai	ice, mun	icore, wiics,	1,4	2
2				tation and	l Arithn	netic A	lgoritł	ims:			
	2.1			ntation: Fl			0			5,7	2
				rithmetic,					r	0,,,	-
			entation	,			01				
	2.2	Intege	r Data co	mputation:	Additio	on, Subt	ractior	n. Multipli	cation:	5,7	2
				cation, Boo							
	2.3			gers: Resto				g division		5,7	2
3			0	anization							
	3.1			re, Registe	0				F (2,4,6	4
				Complex							
				ction Set C							
		sequer		istruction	cycle. II	istructio	JII IIIte	pretation	anu		
	3.2			Soft wi	red (M	licro-pr	ooram	med) and	hardwired	2,3	4
	5.2								encing and	2,5	
				o operation					0		
				-		_		-	-		
	3.3	RISC	and CIS	C: Introdu	action to	RISC	and C	ISC archi	tectures and	3	1
		design issues.									
4			ory Organ								
	4.1								ifications of	3	3
		prima	ry and s	econdary	memor	ies. Ty	pes c	of RAM	and ROM,		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

			Total	42
	5.3	Introduction to parallel processing concepts ,Flynn's classifications ,pipeline processing ,Pipeline stages, Hazards	5	3
	5.2	I/O Interface, I/O channels, I/O modules and IO processor, Types of data transfer techniques: Programmed I/O, Interrupt driven I/O and DMA.	2,5,7	4
	5.1	Buses: Types of Buses ,Bus Arbitration, BUS standards	5,7	3
5		I/O Organization and Introduction to Parallel Processing:		
	4.3	Virtual Memory: Concept, Segmentation and Paging, Page replacement policies. LRU,FIFO	4,5	4
		techniques. Cache Coherency, Interleaved and Associative memory.		
	4.2	Cache memory: Concept, architecture (L1, L2, L3), mapping	2,3	4
		Allocation policies, Memory hierarchy and characteristics.		

- [1] Carl Hamacher, ZvonkoVranesic and SafwatZaky, "Computer Organization", Fifth Edition, Tata McGraw-Hill.
- [2] John P. Hayes, "Computer Architecture and Organization", Third Edition.
- [3] William Stallings, "Computer Organization and Architecture: Designing for Performance", Eighth Edition, Pearson.
- [4] B. Govindarajulu, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, Tata McGraw-Hill.
- [5] Dr. M. Usha, T. S. Srikanth, "Computer System Architecture and Organization", First Edition, WileyIndia. "Computer Organization" by ISRD Group, Tata McGraw-Hill.
- [6] Ramesh Gaonkar ,"Microprocessor architecture ,Programming and application with 8085",5th Edition, Penram
- [7] Nicholas P Carter Adapted by Raj Kamal" "Computer Architecture and Organization", Schaum's Outline ,2ndedition., Tata McGraw Hill.

Course Code		Course Name			Teaching Scheme (Hrs/week)			Credits Assigned				
				L	Т	Р	L	Т	Р	Total		
						2			1	1		
CEL41		sign and An	•			Ex	aminati	1	eme			
CLLII		Algorithms	Lab		ISE		MS	E	ESE	Total		
					40				20	60		
Pre-requisi	Pre-requisite Course Codes ES4 (Progr CE31 (Adv							Data str	ructures)			
At end of su	iccessfu	l completio	n of this cour	rse, student will be able to								
	CO1	Compare	time and sp	nd space complexity of different sorting and searching								
		techniques										
Course	CO2	Solve varie	ous problems	using	dynan	nic pro	ogrammi	ng appr	oach			
Course	CO3	Illustrate t	he concepts of	of greed	dy apj	proach	l					
Outcomes	CO4	Demonstra	te the applic	ability	of ba	cktrac	king, bra	nch and	l bound s	trategies		
		to solve pr	oblems in dif	ferent	domai	ins						
	CO5	Demonstra	te various sti	ring ma	tching	g algoi	rithms					

Exp. No.	Experiment Details	Ref.	Marks
	(Implementation can be in C/C++ Language)		
1	Experiment on finding the running time of algorithm	1,3	5
	Selection sort		
	Insertion sort		
2	Experiment based on divide and conquer approach	2,3	5
	Merge sort		
	Quick sort		
	Binary search		
3	Experiment on finding minimum and maximum numbers using	1	5
	divide and conquer approach		
4	Experiment using dynamic programming approach	1,4	5
	Multistage graphs		
	single source shortest path		
	all pair shortest path		
	0/1 knapsack		
	Travelling salesman problem		
	Longest common subsequence		
5	Experiment based on greedy approach	1,5	5
	Single source shortest path		
	Knapsack problem		
	Job sequencing with deadlines		
	Optimal storage on tapes		
6	Experiment on minimum spanning tree using Greedy approach	1,2,5	5
7	Experiment using Backtracking strategy	2,3	5

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	8 queen problem (N-queen problem)		
	Sum of subsets		
	Graph coloring,		
	15 puzzle problem		
	Travelling salesman problem		
8	Implement string matching algorithms	1	5
	The naïve string matching Algorithm		
	The Rabin Karp algorithm		
	The knuth-Morris-Pratt algorithm		
	Tota	Marks	40

ESE Evaluation:

The ESE evaluation will take place through Practical Examination based on the Lab course at the end of semester. The distribution of marks is as follows.

Practical: (Any experiments based on the Lab course): 10 Marks

Oral: (Oral based on any experiments in the Lab course): 10 Marks

- 1. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, "*Introduction to algorithms*", 3rd edition, PHI publication 2009.
- 2. Ellis Horowitz, SartajSahni , S. Rajasekaran. "*computer algorithms*" 2nd edition, Computer Science Press, 1997
- 3. SanjoyDasgupta, Christos H. Papadimitriou, UmeshVazirani, "*Algorithms*", 1st edition, Tata McGraw- Hill, 2006.
- 4. Jon Kleinberg, Eva Tardos, "*Algorithm Design*", 1st edition, Pearson, 2006.
- 5. Michael T. Goodrich, Roberto Tamassia, "*Algorithm Design and Application*", 1st edition ,Wiley Publication, 2015.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	S	eachir chem rs/wee	e		Cred	lits Assigned		
		L	Т	Р	L]	Γ	Р	Total
				2		-	-	1	1
CEL42	Database Management	Examination Scheme							
	System Lab	ISE		MSE		ES	SE	Total	
		40						40	

Pre-requisi	te Cou	se Codes CE32 (Database Management System)				
At end of su	At end of successful completion of this course, student will be able to					
	CO1	Design a relational database for real world system.				
Course	CO2	Apply SQL commands on database.				
Outcomes	Outcomes CO3 Execute various transaction and recovery commands over database.					
	CO4	To examine effect of concurrency control on database.				

Assign a case study for group of 2/3 students and each group to perform on their case study following experiments.

Exp. No.	Experiment Details	Ref.	Marks
1	1 Create a database for real world system.		
	≻ E-R Diagram		
	➤ Mapping of E-R to relational Model		
	Perform database administration related commands		
	DCL		
2	Build a database and populate using SQL.	1,2	
	1. DDL		5
	2. DML		
3	Perform various nested queries on database.	1,2	_
	JOIN		5
4	Create a reports using view.	1,2	5
5	Perform TCL and Store procedure on database	1,2	5
6	Examine integrity of database using Assertion and Triggers	1,2	5
7	Examine the consistency of database using various concurrency	1,2	
	control techniques.		5
	Creation of serializability schedule.		

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

8	Check for deadlock condition over database	1,2	5
	Total Marks		40

ESE Evaluation:

The ESE evaluation will take place through Practical Examination based on the Lab course at the end of semester. The distribution of marks is as follows.

Practical: (Any experiments based on the Lab course): 10 Marks

Oral: (Oral based on any experiments in the Lab course): 10 Marks

- 1. SharamanShah,"Oracle for Professional", SPD.
- 2. Dr.P.S.Deshpande, "SQL &PLSQL for oracle"Black Book

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	S	eachir chem rs/wee	e		Credit	s Assigned	l
		L	Т	Р	L	Т	Р	Total
CEL43				2			1	1
	On anotin a Sustains Lab	Examination Scheme						
	Operating Systems Lab		ISE		MS	SE	ESE	Total
		40					40	

Pre-requisite	Course	Codes CEL35 (Linux Lab)
	CO1	Illustrate process/file system call in Unix – Understanding.
C	CO2	Illustrate multi threading – Understanding.
Course Outcomes	CO3	Apply various process scheduling/disk scheduling algorithm-Applying.
Outcomes	CO4	Develop inter process communication – Applying.
	CO5	Examine memory management strategy – Analyzing.

Exp. No.	Experiment Details	Ref.	Marks			
1	1 Implement system call in Unix OS.					
2	Implement multi threading application.	1	5			
3	Implement CPU scheduling algorithm.	1	5			
4	Implement Producer consumer problem using Semaphore.	1	5			
5	Implement bankers algorithm for deadlock avoidance.	1	5			
6	Implement demand paging.	1,2	5			
7	Implement disk scheduling algorithm	1	5			
8	Mini project	1	5			
Total Marks						

- [1] Silberschatz A., Galvin P., Gagne G. "Operating Systems Principles", Willey 9th edition.
- [2] "The Design of Unix Operating System", Maurice J. Bach, Prentice Hall.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	P	L	Τ	Р	Total
				2			1	1
CEL44	Computer Organization and Architecture	Examination Scheme						
		ISE		Μ	MSE		SE	Total
		40		-		-		40

Pre-requisite Course Codes		rse Codes Digital Logic Design and Analysis				
After Succe	After Successful completion of course, students will be able to					
CO1 Identify the components of Computers and Assemble the computer system						
	CO2	Design ALU operations using LabView and VHDL tool.				
Course	CO3	Apply data arithmetic algorithms for implementing arithmetic operations				
Outcomes	CO4	Apply various memory management technique for memory allocation and page				
replacement algorithms						
	CO5	Demonstrate I/O operations				
	CO6	Analyze the performance of the systems.				

Exp.	Experiment Details	Ref.	Marks			
No.						
1	To recognize the components of computer ,dismantling and assembling	9	5			
	of CPU and to study processor simulator (open source)					
2	2To demonstrate the working of Assembler using NASM1					
3	To simulate the ALU operations using LabView and VHDL.	1,2,3	5			
4	To implement various algorithms like Booth's algorithm, division by	2,3,4	5			
	restoration and non-restoration for arithmetic operations	6,7				
5	To implement page replacement and memory allocation algorithms.	2,3,4,	5			
		6,7				
6	To implement the mapping techniques of Cache memory.	2,3,4,	5			
		6,7				
7	To implement serial communication using RS232.	1	5			
8	Write a program that simulates the behavior of a	5,6,8	5			
	pipelined processor using open DLX simulator					
	Total	Marks	40			

References:

[1] Manual to use the simulator for computer organization and architecture. Developed

by the Department of CSE, IIT kharagpur (<u>http://cse10-iitkgp.virtual-labs.ac.in/</u>)

 [2] William Stallings, "Computer Organization and Architecture: Designing for Performance", Pearson Publication, 10th Edition, 2013

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

- [3] **B. Govindarajulu**, "Computer Architecture and Organization: Design Principles and Applications", Second Edition, McGraw-Hill (India).
- [4] Morris Mano. "Computer System Architecture" Pearson Publication, 3rd Edition, 2007
- [5] Kai Hwang, FayéAlayé Briggs. "Computer architecture and parallel processing", McGraw-Hill
- [6] P. Pal Chaudhuri. "Computer Organization and Design" Prentice Hall India, 2004
- [7] Dr. M. Usha, T.S. Shrikant. "Computer System Architecture and Organization" Wiley India, 2014.
- [8] P. López. DLXide web page. http://www.gap.upv.es/people/plopez/english.html
- [9] <u>https://youtu.be/obSsX7-ZwWc</u>

Sardar Patel Institute of Technology Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India

(Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	Teaching Scheme (Hrs/week)			Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total
CEL45				2			1	1
	Web Technology Leb	Exan	Examination Scheme					
	Web Technology Lab	ISE		MSE		ESE		Total
		40						40

Pre-requisite Course Codes		Codes	ES4 (Programming Methodology and Data Structures)		
At end of successful completion of this course, student will be able to					
	CO1 Design static web pages using HTML5 and CSS3				
Course	CO2	Apply clie	nt side scripting to static web pages		
Outcomes					
CO4 Develop a web application using web development frameworks					

Exp. No.	Experiment Details	Ref.	Marks
1	Static Web Page Design: HTML5 Basic structure of an HTML5 document, Creating an HTML5 document, Mark up Tags, Heading-Paragraphs, line Breaks HTML5 Tags - Introduction to elements of HTML, Working with Text, Lists, Tables and Frames, Hyperlinks, Images and Multimedia, Forms and other HTML5 controls.	1,2	5
	(Programming assignments based on the above topics)	1.0	-
2	Static Web Page Design: CSS3 Concept of CSS, Creating Style Sheet, CSS Properties, CSS Styling(Background, Text Format, Controlling Fonts), Working with block elements and objects, Lists and Tables, CSS Id and Class, Box Model(Introduction, Border properties, Padding Properties, Margin properties), CSS Advanced(Grouping, Dimension, Display,Positioning, Floating, Align,Pseudo class, Navigation Bar, Image Sprites, Attribute sector), Creating page Layout and Site Designs (<i>Programming assignments based on the above topics</i>)	1,2	5
3	Client side scripting – Javascript Introduction to JavaScript, Lexical Structure, Types, Values, and Variables, Expressions and Operators, Statements, Objects, Arrays, Functions, Pattern matching with regular expressions, Javascript in Web Browsers, The Window object, Scripting Documents, Scripting CSS, Handling Events (<i>Programming assignments based on the above topics</i>)	2	5
4	Client side scripting – JQuery jQuery Basics, jQuery Getters and Setters, Altering Document Structure, Handling events with jQuery, Animated Effects, Utility	3	5

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

	functions, jQuery Selectors and Selection Methods, Extending jQuery		
	with Plug-ins, The jQuery UI Library		
	(Programming assignments based on the above topics)		
5	Bootstrap	4	5
	Introduction to Bootstrap, downloading and installing Bootstrap, The		
	Grid System: Introducing the Grid, Offsetting and Nesting,		
	Responsive Features, Utility Classes, and Supported Devices, CSS		
	Foundations: Typography in Bootstrap, Styling Tables, Styling		
	Forms, Styling Buttons, Images, icons, and Thumbnails, Navigation Systems: Tabs, Pills, and Lists, Breadcrumbs and Pagination,		
	Navigation Bar, Making the Navigation Bar Responsive, Javascript		
	Effects: Drop-downs, Modal Windows, Tooltips and Popovers,		
	Navigation Aids: Tabs, Collapse, Affix, Carousel, Bootstrap		
	Customization: Combining Elements in Bootstrap, Customizing by		
	Components, Plugins, and Variables		
	(Programming assignments based on the above topics)		
6	Server side-scripting – PHP	5	5
	Introduction to PHP, PHP Tags, Adding Dynamic content, Accessing		
	form variables, Identifiers, user-declared variables, Data types,		
	Constants, Operators, Control structures, Conditionals, Iteration		
	constructs, Using arrays, string manipulation and regular expressions,		
	reusing code and writing functions		
	(Programming assignments based on the above topics)		
7	Server side-scripting – PHP	5	5
	Designing and creating your web database, Accessing MySQL		
	database from the Web with PHP, Session Control in PHP		
-	(Programming assignments based on the above topics)		
8	Server side-scripting – Laravel Framework	6	5
	Managing Your Project Controllers, Layout, Views, and Other		
	Assets, Talking to the Database, Model Relations, Scopes, and Other		
	Advanced Features, Integrating Web Forms, Authenticating and		
	Managing Your Users, Deploying, Optimizing and Maintaining Your		
	Application (Programming assignments based on the above tonies)		
	(Programming assignments based on the above topics)	Montra	40
	100	al Marks	40

- [1] J. Millman and A. Grabel, "*Head First HTML and CSS*", 2nd edition, O' Reilly..
- [2] Ben Frain, "Responsive Web design with HTML5 and CSS3", PACKT Publishing Ltd.
- [3] David Flanagan, "Javascript: The Definitive Guide", 6th edition, O' Reilly.
- [4] Jennifer Kyrnin, "SAMS Teach Yourself Bootstrap in 24 hours", 1st edition, Pearson Education.
- [5] L. Welling and L. Thomson, "*PHP and MySQL Web Development*", 4th edition, Adison Wesley Professional.
- [6] <u>Martin</u> Bean, "*Laravel 5 Essentials*", PACKT Publishing Ltd

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	Т	Teaching Scheme (Hrs/week)				Credits Assigned			
Code		L	Т	Р	L	Т	Р	Total		
		1	-	-	- Non-Credits					
T A 1	Vogo Vidvo	Examinatio			on Scheme					
LA1	Yoga-Vidya	IS	E1	ISE2	Att	enda	nce	Total		
		2	20	20		10		50		

Student will be evaluated after six sessions for 20 Marks (ISE1) and at the end of last session for 20 Marks (ISE2). Grade equivalent to 'D' (50%-59.99% Marks) or above is considered as 'Satisfactory'. If any of the tasks given is not completed/submitted/shown/evaluated then the corresponding lower grade will be given. Although the grades are given they will not mentioned in final grade card but they are necessary to declare the successful completion of the Non-Credit course.

Pre-requisite	e Cours	se Codes -					
At end of suc	At end of successful completion of this course, student will be able to						
	CO1 Perform various techniques of Yoga						
Course	CO2	Follow healthy habits to improve immune system					
Outcomes	Dutcomes CO3 Describe the importance of Yoga in one's life						
	CO4	Make resolution to practice techniques of Yoga					

Through this course, students will get an all round experience of how Yoga can benefit their body, breath, emotions along with relaxation techniques to maintain a calm and balanced state of mind.

Day	Topics	Hrs.
No.		
1	What is Yoga, why Yoga?	1
	Techniques: warm up stretches for hands, legs, neck; Sukhasana, Padmasana	
2	Introduction to Ashtanga Yoga	1
	Techniques: Talasana, Utkatasana, Konasana 2	
3	Asana classification and importance of different types of Asanas	1
	Techniques: Sthita-prarthanasana, Ekpadasana, Garudasana	
4	Yogendra rhythm- breathing pattern	1
	Techniques: Parvatasana, Yashtikasana	
5	Forward bending and abdominal compression	1
	Techniques: Konasana 3, Yogamudra	
6	ShuddhiKriyas- Prevention of diseases by improving immune system	1
	Techniques: Jalaneti, Kapalabhati	
7	Yogic Aahar	1
	Techniques: Vajrasana, Pavanmuktasana	
8	Relaxation and it's importance	1
	Techniques: Shavasana	
9	Spine and it's importance in Yoga	1
	Techniques: Bhujangasana, Makarasana, Vakrasana	
10	Pranayama	1
	Techniques: Basic techniques	
11	Attitude training	1
	Techniques: connecting techniques to concepts.	

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

12	Pranayama	1
	Techniques: Traditional Pranayama	
13	Yogachara- The Yoga way of living	1
	Techniques: Games	
14	Revision	1

References:

- [1] SadashivNimbalkar, "Yoga for Health & Practices", Yoga VidyaNiketan, Mumbai.
- [2] Swami SatyanandaSaraswati, "Asana Pranayama Mudra Bandha", Yoga Publications

Trust, Munger, Bihar, 2008

[3] Dr.H.R.Nagendra, Dr.R.Nagarathna, "New Perspectives in Stress Management",

Vivekananda Yoga Research Foundation, Bangaluru

- [4] Books from The Yoga Institute, Santacruz:
 - a) Yoga Cyclopedia Vol 11
 - b) Yoga of caring
 - c) Insights through Yoga
 - d) Growing with Yoga

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Course Code	Course Name	T	Teaching Scheme (Hrs/week)			Credits Assigned			
		L	Т	Р	L	Т	Р	Total	
	Music Appreciation	1	-	-	Non-Credits				
ТАЗ		Examinatio			on Scheme				
LA2		IS	E1	ISE2	Att	tenda	nce	Total	
		2	0	20		10		50	

Student will be evaluated after six sessions for 20 Marks (ISE1) and at the end of last session for 20 Marks (ISE2). Grade equivalent to 'D' (50%-59.99% Marks) or above is considered as 'Satisfactory'. If any of the tasks given is not completed/submitted/shown/evaluated then the corresponding lower grade will be given. Although the grades are given they will not mentioned in final grade card but they are necessary to declare the successful completion of the Non-Credit course.

Pre-requisite Course Codes		Codes		
After success	ful compl	letion of	the course, student will be able to	
Course CO1 Appre		Appre	ciate various processes of Music composition	
Outcomes	CO2			

S.N.	Topics	Hrs.
1	Introduction to audio and digital audio	2 hr
2	Types of Mics and Speakers	1 hr
3	Introduction to instruments	2 hr
4	Introduction to Audio Console	2 hr
5	Audio Production Process	2 hr
6	Effects	2 hr
7	Mixing aesthetics	2 hr
8	Make your song	2 hr

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

				Teaching Scheme					_	
Course		Co	ourse Name		(Hrs/v	•	C	redits	Assig	gned
Code				L	T	P	L	Т	Р	Total
-					-	-		Non-	Credi	ts
LA3		г	Dramatics			Examination	n Sche	eme		
LAJ	Drai		Framatics	IS	E1	ISE2	Att	tendar	nce	Total
					0	20		10		50
			ted after six sessions							
) Marks (ISE2). Grade equivalent to 'D' (50%-59.99% Marks) or above is considered									
			of the tasks given i							
			rade will be given. A							
-	rade	card but	they are necessary t	o decla	re the s	uccessful comp	oletior	n of th	e Non	-Credit
course.			1							
Pre-requ										
At end of	suc		ompletion of this cou			ll be able to				
		CO1	Understand an Art		tre.					
Course		CO2	Express their thoughts.							
Outcom	es	CO3	Create and visualize new ideas.							
		CO4	Perform impressive	ely.						
Day	Тој	pics								Hrs.
No.			2.4							
1			orms of Art)							1
2			ow and Text							1
3			- Abhinay (Acting)							1
4			hinay (Reading)							1
5 6		angikAbh SatvikAbh	ninay (Expressions)							1
0 7			(Direction)							1
8		oathya (S								1
<u> </u>	-		(Drapery)							1
10			(Dialogs and Lang	uage)						1
10			akash (Time and Sp							1
12			(Theory of Rasa)							1
13		•	(Theory of Rasa)							1
14		vadprakri								1
		i	*						Total	

- [1] An Actors prepare Stanislavsky (English)
- [2] A building a Character Stanislavsky(English)
- [3] Natyashastra Bharatmuni (English And Marathi)
- [4] Abhinaysadhana- K. Narayan Kale (Marathi)
- [5] Natyavimarsh-K. Narayan Kale (Marathi)

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

- [6] JagatikRangabhumichaItihas Kru. Ra. Sawant (Marathi)
- [7] Marathi RangabhumichaItihas- Shri. Na. Banahatti (Marathi)
- [8] Lalitkalamimansa- Go. Chi. Bhate(Marathi)
- [9] SahityaAdhyapanAniPrakar- va.la. KulakarniGauravgranth(Marathi)
- [10] VachikAbhinay- Dr. ShriramLagoo (Marathi)
- [11] Rangnayak- Arwind Deshpande

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

'Activity Based Learning'

ABL1: Building Automation, Fire Safety and Electronic Security

This is non-credit activity conducted in semester III for all the branches of engineering. It is compulsory for all the students to appear for this activity.

This is one day event involving following activities:

- 1. Invited Talks on the related topics
- 2. Poster Presentation
- 3. Fire/Safety Drills
- 4. Design competition in building automation, fire safety and security.

This event shall be conducted in association with Fire and Security Association of India (FSAI).

ABL2:OCCUPATIONAL SAFETY & LEGAL STUDIES FOR ENGINEERS

Engineering is the branch of science and technology concerned with design, building and the use of engine, machines and structures. In this fast moving world scenario, it is seen that the field of Engineering has travelled a very long distance of time space. In the modern parlance, this field must be properly knitted with the other two important dimensions—SAFETY & LAW. An Engineer must have adequate knowledge of these vital subject if he ever wishes to establish himself in this Industrial world.

The following activities have been designed to meet up with the growing expectations with the concerned topic. Students are requested to actively participate in those activities based learning to catch up with the realities of the industrial world.

Hence, the activities are divided into 5 parts—MOOT COURT, DEBATE, ELOCUTION, PRESENTATION & ROLE PLAY

1) <u>MOOT COURT:</u>

It is a process in which participants take part in simulated court proceedings, usually involving drafting memorials or memoranda and participating in oral argument. It is just a dummy presentation of the actual court proceedings. It will have a pair of counsel from the defendant as well as the prosecution side. The case write up will be given to both the sides well in advance. They need to study the case along the lines of actual law pertaining to the case which will be more or less company law, intellectual property laws, banking laws, insurance laws or negotiable instrument laws. Both sides will have a researcher who will work along with his respective team to unearth any backdated supportive cases. The sides has to come in common consensus to work on issues which should not be more than five. Based on those issues both sides will present their case turn by turn with the permission of the judge. Judge can consist of persons ranging from 1 to 3. The issues should be dealt with in the book called memorial which should be prepared by both the sides. The prosecution will start the case followed by the defendants. Nobody can criss-cross each other's time of presentation. The judge/s have to control the whole proceedings properly. The judge has the power to give permission for rebuttal as per his own whims. In the end he will pass the judgment based on law.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

2) <u>DEBATE:</u>

Debates will have topics based on safety and law based and the pair of participants need to stand for or against the motion.

3) ELOCUTION:

Same will be the case with elocution but it will be extempore and the participants will have to present their insights on the topic given on the spot.

4) <u>PRESENTATION:</u>

A PPT presentation will have topics based on legal laws and students need to prepare the same.

The list of topics are:

Sale deed, WILL, Gift Deed, Agreement, Power of attorney, MOU(Memorandum of Understanding), Non-Disclosure agreements, Affidavit, Charter, Partnership deed, Copyrights Transfer Agreement, Franchise Termination, Lease purchase contract, Letters Patent, Legal Threat, Promissory Note, Share Certificate, Share transmission, PIL (Public Interest Litigation).

5) <u>ROLE PLAY:</u>

This activity is a group activity whereby they have to work as a team and enact some situation pertaining to law or safety in the Industrial premises. It's a fun activity whereby they camouflage themselves stepping into the shoes of the role that they will be performing to create an awareness amongst the audience of what to do in case they find themselves in same situations in near future.

6) <u>Client Counseling</u>

The Client Counseling addresses fundamental skill of ability to interview, counsel, and support a client through their legal issue. Competitors conduct an initial interview with a person playing the role of the client and then address both the client's legal and non-legal needs.

7) <u>Negotiation</u>

Negotiation provides a means for students to practice and improve their negotiating skills. The activity simulates legal negotiations in which students, acting as lawyers, negotiate a series of legal problems. The simulations consist of a common set of facts known by all participants and confidential information known only to the participants representing a particular side.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Competitive Examinations Preparation (CEP): (Extra credits=2)

Salient Features of CEP:

- \succ It is optional module
- > Motivation, mentoring and preparation of students to pursue higher education
- > Modules as per national level technical competitive examination **GATE**
- Motivation, mentoring and preparation of students to join public sector or government organizations like BARC, DRDO etc.
- Motivation, mentoring and preparation of students to join top ranking technical institutes in country like IISc and IIT.
- Module design as per the courses studies in that semester or prior semester by considering syllabus of GATE examination
- > Help to sharpen the problem solving skills of students and concerned teachers
- Course mentors will be allotted at the start of academic year
- ➤ Two (2) extra credits will be given if
 - 3. Student submit Valid Gate Score card.
 - 4. Must pass CEP1 to CEP6 in modal question papers given by the faculty
 - 5. Maintains regular contact with CEP course teachers

CEP Courses:

Semester III: CEP1: Introduction to CEP

One hour introduction session to entire class about CEP.

Student shall be assigned as 'Teaching Assistant' to Engineering Mathematics Course –I. Student shall maintain regular contact with the semester III course teachers (once in a week per course). Teacher shall maintain the attendance of the student. Teacher shall mentor student and give assignments with GATE level problems to solve. At least TWO assignments per course shall be submitted by the student.

After End Semester Examination student shall appear for the Model Test paper based on the pattern of the actual GATE Examination. This paper shall be based on the contents of Semester-I and Semester-III courses. The negative marking is applicable as per GATE pattern.

The student shall obtain minimum 10 marks to continue registration in CEP module for next semester onwards.

Semester IV: CEP2: Problem solving module-I

Student shall be assigned as 'Teaching Assistant' to Engineering Mathematics Course–II and Basics of electrical Engineering.

Student shall maintain regular contact with the semester IV course teachers (once in a week per course). Teacher shall maintain the attendance of the student. Teacher shall mentor student and

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

give assignments with GATE level problems to solve. At least TWO assignments per course shall be submitted by the student.

After End Semester Examination student shall appear for the Model Test paper based on the pattern of the actual GATE Examination. This paper shall be based on the contents of Semester-II and Semester-IV courses. The negative marking is applicable as per GATE pattern.

The student shall obtain minimum 10 marks to continue registration in CEP module for next semester onwards.

Semester V: CEP3: Problem solving module-II

Student shall be assigned as 'Teaching Assistant' to Semester III courses.

Student shall maintain regular contact with the semester V course teachers (once in a week per course). Teacher shall maintain the attendance of the student. Teacher shall mentor student and give assignments with GATE level problems to solve. At least TWO assignments per course shall be submitted by the student.

After End Semester Examination student shall appear for the Model Test paper based on the pattern of the actual GATE Examination. This paper shall be based on the contents of Semester-V courses. The negative marking is applicable as per GATE pattern.

The student shall obtain minimum 10 marks to continue registration in CEP module for next semester onwards.

Semester VI: CEP4: Problem solving module –III

Student shall be assigned as 'Teaching Assistant' to Semester IV courses.

Self-Learning: Numerical Ability and Verbal Ability

Student shall maintain regular contact with the semester VI course teachers (once in a week per course). Teacher shall maintain the attendance of the student. Teacher shall mentor student and give assignments with GATE level problems to solve. At least TWO assignments per course shall be submitted by the student.

After End Semester Examination student shall appear for the Model Test paper based on the pattern of the actual GATE Examination. This paper shall be based on the contents of Semester VI courses and self-learning module on numerical ability and verbal ability. The negative marking is applicable as per GATE pattern.

The student shall obtain minimum 10 marks to continue registration in CEP module for next semester onwards.

Semester VII:

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

CEP5: Problem solving module-IV

Student shall be assigned as 'Teaching Assistant' to Semester V courses.

Self-Learning: Contents not covered in any semester of study

Student shall maintain regular contact with the semester VII course teachers (once in a week per course). Teacher shall maintain the attendance of the student. Teacher shall mentor student and give assignments with GATE level problems to solve.

At least TWO assignments per course shall be submitted by the student.

After End Semester Examination student shall appear for the Model Test paper based on the pattern of the actual GATE Examination. This paper shall be based on the contents of entire syllabus of GATE Examination. The negative marking is applicable as per GATE pattern. The student shall obtain minimum 10 marks to continue registration in CEP module for next semester onwards.

Semester VIII: CEP6: Problem solving module-V

At the start of the semester student shall appear for the TWO Model Test papers based on the pattern of the actual GATE Examination. This paper shall be based on the contents of entire syllabus of GATE Examination. The negative marking is applicable as per GATE pattern.

Student shall submit 'Valid GATE Score Card' after declaration of GATE result.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Mapping with Syllabus for GATE Exam (Semester-wise)

Semester - I

Engineering Mathematics-I: Linear Algebra: Matrices, determinants, system of linear equations, Calculus:. Maxima and minima.

Semester-II

Engineering mathematics –II: Integration.

Programming Methodology and Data Structures: Programming in C. Recursion. Arrays, stacks, queues, linked lists.

Semester-III

Advanced Data Structures: linked lists, trees, binary search trees, binary heaps, graphs, Graph search, hashing.

Digital Logic Design and Analysis: Number representations, Combinational and sequential circuits. Minimization.

Discrete Structures and Graph Theory: Boolean algebra, Propositional and first order logic. Sets, relations, functions, partial orders and lattices. Groups. Graphs: connectivity, matching, coloring.recurrence relations, generating functions.

Semester-IV

Applied Mathematics-II: Linear Algebra: eigenvalues and eigenvectors Matrices, determinants, Probability: Random variables, poisson and binomial distributions. and Bayes theorem.

Analysis of Algorithms: Searching, sorting, Asymptotic worst case time and space complexity. Algorithm design techniques: greedy, dynamic programming and divide and conquer, minimum spanning trees, shortest paths.

Database Management Systems: ER- model. Relational model: relational algebra, tuple calculus, SQL. Integrity constraints, normal forms. . Transactions and concurrency control.

Operating Systems:Processes, threads, inter- process communication, concurrency and synchronization. Deadlock. CPU scheduling. Memory management. File systems.

Computer Organization and Architecture: computer arithmetic (fixed and floating point), ALU, data path and control unit. Instruction pipelining. Memory hierarchy: cache, main memory and secondary storage; I/O interface (interrupt and DMA mode), virtual memory

Semester V:

Computer Networks: Concept of layering. LAN technologies (Ethernet). Flow and error control techniques, switching. IPv4/IPv6, routers and routing algorithms (distance vector, link state). TCP/UDP and sockets, congestion control. Application layer protocols (DNS, SMTP, POP, FTP, HTTP). Basics of Wi-Fi. Network security: authentication, basics of public key and private key cryptography, digital signatures and certificates, firewalls.

Theory of Computer Science: Regular expressions and finite automata. Context-free grammars and push-down automata. Regular and contex-free languages, pumping lemma. Turing machines and undecidability.

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

Microprocessor:-Machine instructions and addressing modes.

Semester VI:

System Programming and Compiler Construction: Lexical analysis, parsing, syntax-directed translation. Runtime environments. Intermediate code generation.

Covered in previous standards:-

Mean, median, mode and standard deviation. Conditional probability, Limits, continuity and differentiability

Not covered in any Semester

LU decomposition, Mean value theorem, Combinatorics: counting, File organization, indexing (e.g., B and B+ trees)

Self-Learning Module: General Aptitude

I. Verbal Ability

- 1. Grammar
- 2. Nouns, Pronouns, Articles
- 3. Verbs, Auxiliaries, Modals
- 4. Adjectives, Adverbs
- 5. Prepositions, Conjunctions
- 6. Active/ Passive Voice, Direct/ Indirect Speech
- 7. Verbal phrases
- 8. Sentence Completion
- 9. Vocabulary
- 10. Synonyms
- 11. Antonyms
- 12. Analogy
- 13. Reverse Analogy
- 14. Verbal Reasoning
- 15. Critical Reasoning
- 16. Logical Reasoning

II. Numerical Ability

I. Quantitative Aptitude:

- 1. Simple Equations
- 2. Ratio-proportion-variation
- 3. Numbers
- 4. Percentage, Profit and Loss
- 5. Simple Interest and Compound Interest
- 6. Average, mixtures and Alligations
- 7. Time and Work
- 8. Time and Distance
- 9. Indices, Surds, Logarithms
- 10. Quadratic Equations
- 11. Inequalities
- 12. Progressions

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous Institute Affiliated to University of Mumbai

- 13. Permutations and Combinations
- 14. Data Interpretation

II. Reasoning

- 1. Number and Letter Series
- 2. Analogies
- 3. Odd man out (Classification)
- 4. Coding and Decoding
- 5. Blood relations
- 6. Venn Diagrams
- 7. Seating Arrangements
- 8. Puzzles
- 9. Clocks and Calendars